

Ficha Técnica

Coordenação Técnica	Direção Regional do Ordenamento do Território e Recursos Hídricos Sandra Mendes Renato Marques
Equipa Técnica	LabGeo – Engenharia e Geotecnologia, Lda. Diogo Caetano Diana Ponte Adriano Pacheco Rúben Cabral
Projeto	Elaboração de Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os Períodos de Retorno de 25, 50 e 100 anos
Descrição do Documento	Guia prático com orientações e metodologia para modelação e delimitação de áreas inundáveis com base nos caudais de ponta de cheia para os períodos de Retorno de 25, 50 e 100 anos
Versão	Versão Final
Data	Novembro de 2023

Índice

1	Int	rodução	1
	1.1	Âmbito e Objetivos	1
	1.2	Enquadramento e Contexto Legal	2
	1.3	Cheias e Inundações e o Impacto das Alterações Climáticas	4
2	Me	todologia para Modelação Hidrológica	5
	2.1	Processamento de Dados Geométricos	6
	2.2	Simulação do Escoamento	7
	2.3	Modelação das Áreas Inundáveis	7
3	Мо	delação Hidrológica – Casos Práticos	9
	3.1	Ribeira Seca, Ilha de São Jorge – Linha de Água Principal	10
	3.1	.1 Processamento de Dados no ArcMap	10
	3.1	.2 Simulação do Escoamento no HEC-RAS	21
	3.1	.3 Modelação das Áreas Inundáveis no ArcMap	30
	3.2	Ribeira Seca – Linha de Água Principal e Afluentes	34
	3.2	.1 Processamento de Dados no ArcMap	34
	3.2	.2 Simulação do Escoamento no HEC-RAS	47
	3.2	.3 Modelação das Áreas Inundáveis no ArcMap	58
	3.3	Erros Mais Comuns no Processamento dos Dados Geométricos	62
4	Bib	liografia	65

Índice de Figuras

Índice de Tabelas

Manning (Cirilo, 2001 in Gonçalves, 2016)5	Tabela 2.1 Valores de rugosidade de Ma
ta de cheia (PGRH-Açores 2022-2027) e da inclinação da linha de	Tabela 3.1 Dados do caudal de ponta c
Seca	água principal da bacia hidrográfica da Ribeira Sec
onta de cheia e da inclinação das linhas de água definidas para o	Tabela 3.2 Dados dos caudais de ponta

1 Introdução

1.1 Âmbito e Objetivos

O presente documento constitui o guia prático de delimitação de áreas inundáveis com base nos caudais de ponta de cheia para períodos de retorno de 25, 50 e 100 anos, o qual tem como intuito padronizar o processo de elaboração e produção de informação cartográfica relativa ao risco de cheias e inundações nos Açores.

Este guia apresenta e demonstra a aplicação de uma proposta de metodologia a utilizar para produção de cartas de zonas inundáveis – extensão de área potencialmente afetada por inundações – com base nos caudais de ponta de cheia para vários períodos de retorno – 25, 50 e 100 anos. O período de retorno corresponde ao intervalo médio entre ocorrências sucessivas de um acontecimento, não significando, contudo, que exista uma repetição cíclica e/ou regular das mesmas (Hipólito e Vaz, 2013).

O presente guia destina-se sobretudo aos técnicos da administração pública regional e local da Região Autónoma dos Açores com competências em ordenamento do território e gestão de riscos naturais.

O conteúdo documental do guia prático encontra-se organizado de acordo a seguinte estrutura:

- 1. Introdução, na qual se enquadra o âmbito e objetivos da realização do presente guia prático e se apresenta um enquadramento da temática no contexto legal e face ao panorama das alterações climáticas;
- 2. Metodologia para Modelação Hidrológica, ao nível da qual se apresenta e descreve a metodologia para modelação hidrológica das áreas inundáveis, incluindo, nomeadamente, os dados necessários para o efeito, assim como as diferentes etapas do processo de modelação;
- 3. Modelação Hidrológica Caso Prático, onde se detalha e exemplifica a aplicação da metodologia, mostrando o passo a passo de cada etapa, recorrendo a dois exemplos práticos. São apresentados dois exemplos práticos para a mesma bacia hidrográfica primeiro considerando apenas a linha de água principal da bacia hidrográfica; e depois considerando a linha de água principal, bem como os seus afluentes;
- 4. Bibliografia, onde se listam as fontes bibliográficas utilizadas no presente guia prático.

1.2 Enquadramento e Contexto Legal

As cheias são um fenómeno hidrológico extremo em que o caudal, originado pela precipitação intensa, excede a capacidade de vazão do leito menor do curso de água de determinada bacia hidrográfica, ocorrendo, desta forma, inundação de áreas que a isso não estão sujeitas habitualmente (Hipólito e Vaz, 2013).

As cheias podem causar danos graves em infraestruturas, interrupção de vias de comunicação (*e.g.* estradas, pontes), danos em produções agrícolas e provocar desalojados, e eventualmente, vítimas mortais, resultando em relevantes prejuízos materiais, sociais e económicos. A dimensão dos estragos irá depender da extensão de área inundada, das infraestruturas e população presentes e da altura de água nas zonas afetadas.

Desta forma, e apesar das cheias, enquanto fenómeno natural, não poderem ser evitadas, devem ser, tanto quanto possível, realizadas ações que permitam uma adequada gestão deste risco, nomeadamente na proteção, prevenção e minimização dos seus efeitos. Para uma gestão adequada do risco de cheias e inundações devem ser tidas em consideração as particularidades locais, pelo que a análise deverá ser realizada à escala da bacia hidrográfica. Nesse contexto, as cartas de zonas inundáveis são uma importante e necessária ferramenta.

Em termos legislativos, o decreto-lei (DL) n.º 115/2010, de 22 de outubro, aprova o quadro para a avaliação e gestão dos riscos de inundações, a nível nacional, transpondo para a ordem jurídica interna a Diretiva n.º 2007/60/CE, do Parlamento Europeu e do Conselho, de 23 de outubro, e indo igualmente ao encontro da preocupação relativa à mitigação dos efeitos das inundações, estabelecida na Diretiva n.º 2000/60/CE, do Parlamento Europeu e do Conselho, de 23 de outubro.

De acordo com o referido diploma legal, para uma gestão adequada do risco de inundações, cada região hidrográfica deverá: definir as unidades de gestão; efetuar a avaliação preliminar de riscos de inundações; propor as zonas de riscos potenciais significativos de inundações; elaborar as cartas de zonas inundáveis para áreas de risco e as cartas de risco de inundações; e elaborar e implementar os planos de gestão de riscos de inundações (PGRI).

Segundo o disposto no DL n.º 115/2010, de 22 de outubro, as cartas de zonas inundáveis para áreas de risco e as cartas de riscos de inundações devem ser consideradas na delimitação das zonas inundáveis, das zonas ameaçadas pelas cheias e das zonas ameaçadas pelo mar, aquando da elaboração ou revisão dos planos municipais de ordenamento do território, e para efeitos da elaboração das cartas da reserva ecológica nacional.

A reserva ecológica nacional corresponde a uma estrutura biofísica que integra o conjunto das áreas que pela sensibilidade, função e valor ecológicos ou pela exposição e suscetibilidade perante riscos

naturais, são objeto de proteção especial. Conforme o disposto no DL n.º 166/2008, de 22 de agosto, e alterações subsequentes, um dos objetivos da reserva ecológica nacional é prevenir e reduzir os efeitos dos riscos de cheias, contribuindo para a adaptação aos efeitos das alterações climáticas e acautelando a sustentabilidade ambiental e a segurança de pessoas e bens.

Na reserva ecológica nacional estão integradas, entre outras, áreas de prevenção de riscos naturais, as quais abarcam as tipologias: zonas adjacentes; zonas ameaçadas pelo mar; zonas ameaçadas pelas cheias; áreas de elevado risco de erosão hídrica do solo; e áreas de instabilidade de vertentes. Nesse contexto, as zonas ameaçadas pelas cheias correspondem a áreas suscetíveis de inundação por transbordo de água do leito dos cursos de água e leito dos estuários, devido à ocorrência de caudais elevados e à ação combinada de vários fenómenos hidrodinâmicos característicos destes sistemas.

De acordo com o mesmo diploma legal, a delimitação dessas zonas é efetuada através de modelação hidrológica e hidráulica que permita o cálculo das áreas inundáveis com período de retorno de 100 anos da observação de marcas ou registos de eventos históricos e de dados cartográficos, de critérios geomorfológicos, pedológicos e topográficos e tendo em conta fatores como o nível de maré máximo, a subida do nível médio do mar, a sobrelevação meteorológica e as ondas de geração local.

Na Região Autónoma dos Açores (RAA) há, por sua vez, que ter em consideração o documento "Orientações Metodológicas para Delimitação da Reserva Ecológica – PDM na RAA", publicado pela Secretaria Regional do Ambiente e Alteracões Climáticas em julho de 2021, que tem como intuito definir orientações metodológicas relativas à delimitação de cada uma das tipologias de áreas que integram a reserva ecológica na RAA até que seja adaptado o regime em vigor às especificidades do território do arquipélago.

No âmbito do referido documento é estabelecido como critério para delimitação das zonas ameaçadas pelas cheias a adoção das zonas críticas de inundação definidas em sede de Plano de Gestão de Riscos de Inundações da Região Autónoma dos Açores (PGRIA) em vigor. Sendo que os municípios que entendam incluir novas zonas críticas de inundação deverão adotar a metodologia do Plano de Gestão da Região Hidrográfica Acores (PGRH-Acores), devidamente adaptada à escala municipal, capaz de elaborar uma modelação aproximada do risco de cheia das principais bacias hidrográficas. Para esse efeito, devem ser utilizados os seguintes fatores de ponderação:

- 1. Caudal de ponta específico, para o período de retorno de 100 anos;
- 2. Densidade de drenagem média de cada bacia hidrográfica;
- 3. Ocupação do solo;
- Registo histórico do número de ocorrências de cheia.

1.3 Cheias e Inundações e o Impacto das Alterações Climáticas

As cheias e inundações são um fenómeno com ocorrência recorrente nos Açores e que se perspetiva, no futuro, ocorram com maior frequência, consequência dos efeitos das alterações climáticas. De acordo com o Programa Regional para as Alterações Climáticas (PRAC), no arquipélago dos Açores espera-se uma maior concentração de precipitação no inverno, sendo, por essa via, expectável um aumento de eventos de cheias e inundações. Contudo, esta projeção não permite conhecer a frequência, dimensão ou mesmo localização destas eventuais ocorrências.

No contexto da elaboração de mapas de áreas inundáveis, a consideração das alterações climáticas poderá ser introduzida pela variável do caudal de ponta de cheia. Para tal, têm de existir dados que permitam o cálculo do caudal de ponta de cheia, considerando os valores de precipitação média mensal apresentados nos cenários RCP 4.5 e RCP 8.5 do PRAC (*Representative Concentration Pathways* – correspondem a diferentes concentrações de CO₂eq. por parte de milhão de volume; geralmente utilizados a nível internacional para caracterização e cenarização futura do clima, com base nos dados mensais agregados de precipitação e temperatura média, para os períodos de curto (2010-39), médio (2040-69) e longo prazo (2070-99)).

A utilização exclusiva dos dados históricos pode limitar a análise e condicionar uma mais eficaz adaptação do território e da população para os efeitos futuros das alterações climáticas. Assim, para uma melhor preparação para o futuro deve considerar-se a possibilidade de integrar as projeções das alterações climáticas para os Açores nos trabalhos de análise e avaliação do risco de cheias e inundações e desta forma contribuir para uma mais eficaz gestão dos riscos.

2 Metodologia para Modelação Hidrológica

A delimitação de áreas inundáveis deve ser realizada com recurso a programa de modelação hidrológica e de sistema de informação geográfica, sendo necessários os seguintes dados cartográficos de base para processamento da informação:

- Altimetria;
- Limite das bacias hidrográficas;
- Linhas de água.

A utilização de dados de base o mais próximo e representativo da realidade possível contribuirá para o aumento da fiabilidade dos resultados da modelação.

Para além dos dados cartográficos, são também necessários outros dados, nomeadamente:

- Coeficiente de rugosidade de *Manning* (valores definidos em bibliografia da especialidade e que correspondem a um coeficiente de resistência ao escoamento num determinado sector do canal; consultar Tabela 2.1);
- Caudal de ponta de cheia (valores indicados no PGRH-Açores 2022-2027);
- Inclinação da linha de água (cálculo efetuado com base nos dados cartográficos e que corresponde ao quociente da diferença entre a cota máxima e a cota mínima da linha de água, pelo comprimento total da linha de água).

De uma forma sucinta, numa primeira etapa, é realizado o processamento da informação cartográfica, nomeadamente dos dados geométricos das linhas de água consideradas, no sistema de informação geográfica. Os dados geométricos são exportados para o programa de modelação hidrológica, onde são validados e complementados com informação relativa ao escoamento. Realiza-se, então, a simulação do escoamento, da qual resultam dados relativos à elevação da superfície da água para o caudal de ponta de cheia atribuído. Esta informação é, depois, exportada para o sistema de informação geográfica, onde se geram as áreas inundáveis, as quais devem ser objeto de validação e uniformização.

Tabela 2.1 | Valores de rugosidade de Manning (Cirilo, 2001 *in* Gonçalves, 2016)

	Natureza do Fundo	Muito Boa	Воа	Regular	Má
A.L	Pedra argamassada	0,017	0,020	0,025	0,030
	Pedra aparelhada	0,013	0,014	0,015	0,017
AIVENIANA	Pedra seca	0,025	0,033	0,033	0,035
	Tijolos	0,012	0,013	0,015	0,017

	Natureza do Fundo	Muito Boa	Воа	Regular	Má
	Abertos em rocha (irregular)	0,035	0,040	0,045	-
	Com fundo em terra e talude com pedras	0,028	0,030	0,033	0,035
Capair	Com leito pedregoso e talude vegetado	0,025	0,030	0,035	0,040
Cariais	Com revestimento de betão	0,012	0,014	0,016	0,018
	De terra (retilíneos e uniformes)	0,017	0,020	0,023	0,025
	Dragados	0,025	0,028	0,030	0,033
Gabião		0,022	0,030	0,035	-
Superfícies de arg	jamassa de cimento	0,011	0,012	0,013	0,015
Superfícies de cim	nento alisado	0,010	0,011	0,012	0,013
	Limpos retilíneos e uniformes	0,025	0,028	0,030	0,033
Córregos e rios	Limpos retilíneos e uniformes com pedras e vegetação	0,030	0,033	0,035	0,040
	Limpos retilíneos e uniformes com meandros e poços	0,035	0,040	0,045	0,050
Margens	Com pouca vegetação	0,050	0,060	0,070	0,080
espraiadas	Com muita vegetação	0,075	0,100	0,125	0,150

2.1 Processamento de Dados Geométricos

Para o processamento da informação necessária à modelação hidrológica é necessária uma base de trabalho, a qual deverá corresponder a informação tridimensional do terreno em análise – bacia hidrográfica. Esta informação permitirá a criação das camadas vetoriais necessárias à modelação:

- Centro geométrico da ribeira: Linha que define o eixo central do leito da ribeira;
- Margens da ribeira: Linhas que definem os limites do "leito menor" da ribeira;
- Linhas de escoamento: Linhas que definem, em função da altimetria e morfologia local, a zona de máximo alcance possível do escoamento/inundação;
- Secções transversais: Linhas traçadas de forma a intersectar perpendicularmente a linha referente ao centro geométrico da ribeira e as respetivas margens e linhas de escoamento. Uma vez que as áreas inundáveis serão geradas com base na informação das secções transversais, quantas mais secções forem incluídas no modelo, melhor irá ser representado o terreno e maior será o rigor na definição da área abrangida pela inundação (Cook e Merwade, 2009 *in* Gonçalves, 2012).

Apenas após o processamento destes dados geométricos, a informação gerada poderá ser processada no programa de modelação hidrológica.

2.2 Simulação do Escoamento

Para proceder à simulação do escoamento na linha de água deve-se, em primeiro lugar, verificar, e se necessário corrigir, a informação geométrica processada anteriormente. Às camadas vetoriais referentes aos dados geométricos são atribuídos os valores referentes ao coeficiente de rugosidade para as margens e leito da linha de água de cada secção transversal.

Para a simulação do escoamento é necessário indicar o valor do caudal de ponta de cheia para o qual será realizada a simulação e indicar a inclinação da linha de água na qual irá ser simulado o escoamento.

Com todos os dados introduzidos e revistos é então realizada a simulação do escoamento. A simulação calcula a altura da água em todas as secções transversais e utiliza a interpolação para efetuar as previsões nas zonas entre as mesmas, correspondendo, como tal, o resultado a perfis de inundação. Os dados da elevação da superfície da água são convertidos em dados espaciais no sistema de informação geográfica utilizado.

2.3 Modelação das Áreas Inundáveis

No processo de modelação a informação altimétrica será convertida em dados espaciais, no sistema de informação geográfica, sendo então gerada a mancha bruta, representativa da área inundável em formato *shapefile* e *raster*.

A mancha bruta resultante deve ser analisada e validada com recurso a trabalho de campo e a dados existentes relativos a ocorrências históricas. Desta análise poderão resultar ajustes às manchas inundáveis, no sentido de reduzir ou alargar os seus limites. Deve também proceder-se à suavização/aligeiramento das formas geométricas da *shapefile* validada.

3 Modelação Hidrológica – Casos Práticos

Para demonstração da metodologia apresenta-se, para um caso de estudo, as etapas necessárias, passo a passo e com o apoio de imagens – capturas de ecrã (*print screens*), à produção dos mapas de áreas inundáveis para cheias com os tempos de retorno de 25, 50 e 100 anos.

Foi selecionado como caso de estudo a Ribeira Seca, na ilha de São Jorge. Num primeiro exemplo, apresenta-se a metodologia para o caso geral, em que se considera a linha de água principal da bacia hidrográfica, e num segundo exemplo apresenta-se a metodologia para um caso mais detalhado, em que se considera o processamento de informação referente também às linhas de água afluentes.

A delimitação das áreas inundáveis será realizada com recurso ao programa de modelação hidrológica HEC-RAS e ao sistema de informação geográfica ArcGIS. Existe, também, a possibilidade de utilização do sistema de informação geográfica de código aberto QGIS, recorrendo à extensão RiverGIS.

De uma forma sucinta, e conforme definido no guia, numa primeira etapa, é realizado o processamento da informação cartográfica. Este processamento será realizado no programa ArcMap, com recurso à extensão HEC-GeoRAS (que deverá ser instalada no ArcMap e que contém um conjunto de ferramentas que serão utilizadas no processamento da informação geoespacial). Os dados processados – dados geométricos – são, então, exportados para o HEC-RAS. Numa segunda etapa, no HEC-RAS, os dados importados são validados e complementados com informação relativa ao escoamento. Realiza-se, então, a simulação do escoamento, da qual resultam dados relativos à elevação da superfície da água para o caudal de ponta de cheia atribuído. Esta informação é, depois, exportada para o ArcMap. Na terceira e última etapa, no ArcMap (extensão HEC-GeoRAS), geram-se, com base nos dados importados, as áreas inundáveis, as quais são, depois, objeto de validação e uniformização (Figura 3.1).

Figura 3.1 | Esquematização das etapas para modelação das áreas inundáveis nos programas informáticos ArcMap e HEC-RAS

3.1 Ribeira Seca, Ilha de São Jorge – Linha de Água Principal

3.1.1 Processamento de Dados no ArcMap

Recomenda-se que toda a informação seja trabalhada e guardada na raiz de unidade de disco rígido diferente da unidade onde consta o sistema operativo.

Efetuar a transferência da versão mais recente da extensão HEC-GeoRAS 10.2, em: <u>https://www.hec.usace.army.mil/software/hec-georas/downloads.aspx</u> e correr o executável. Seguir o passo 2.1 para adicionar o Hec-GeoRAS à barra de ferramentas (*toolbar*) do ArcMap.

1.º Passo Preparação dos dados de entrada

- Gerar um modelo de superfície TIN (*triangular irregular networks* rede irregular triangulada), com células de 10x10 m, para a bacia hidrográfica em análise, a partir da altimetria e do limite da bacia hidrográfica;
- 1.2. Editar a *shapefile* da linha de água, de forma que a informação espacial nela contida seja referente apenas à linha de água principal, sem os seus afluentes. A linha de água principal de determinada bacia hidrográfica corresponde à linha de água de maior comprimento.

2.º Passo Preparação do projeto de trabalho

2.1. Abrir o ArcMap e adicionar a extensão HEC-GeoRAS à barra de ferramentas (*toolbar*) do ArcMap;

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

	Customize	Windows	Help		Advanced Editing
	Toolba	rs	•		Animation
	Extensi	ions			ApUtilities
	Add-In	Manager			ArcScan
	Custor	nize Mode			COGO
	Style N	lanager			Data Driven Pages
	ArcMa	n Ontions			Data Frame Tools
	Arcivia	p options			Distributed Geodatabase
				~	Draw
				~	Edit Vertices
				~	Editor
					Effects
					Feature Cache
					Feature Construction
					Geocoding
					Geodatabase History
					Geometric Network Editing
				~	Georeferencing
					Geostatistical Analyst
					GPS
RAS Geometry + RAS Mapping + 🙀 👬	े हें च च द	ApUtilities	- He	lp •	raphics

2.2. Adicionar os dados de entrada (TIN e *shapefile* da linha de água) ao documento do ArcMap – por predefinição o projeto assume o sistema de coordenadas dos dados de entrada;

.ook in: 🚞	data	 ~ 💪 🙆	•	
 ✓ tin_ribseca ✓ LinhaAgua ☑ BH_RibSeca ✓ Altimetria_ 	_RibeiraSeca.shp a.shp sjo_cn5.shp			
Name:	-			Add

- 2.3. Salvar o documento (*File > Save As... >* Atribuir nome ao ficheiro e guardá-lo na pasta pretendida).
- 3.º Passo Criar as camadas geométricas (*RAS Layers*) a vectorização dos elementos das camadas geométricas deve ser realizada sempre de montante para jusante e da esquerda para a direita. Apenas as secções transversais devem intersectar elementos das restantes camadas. Nenhuma das outras camadas pode intersectar outras camadas. Elementos das mesmas camadas não podem intersectar-se):
 - 3.1. Na extensão HEC-GeoRAS selecionar *RAS Geometry* > *Layer setup* > em *"Required Surface"* selecionar a TIN da bacia hidrográfica;

🗶 Layer Setup	for HEC-RAS PreProce	ssing				×
Required Surface	Required Layers Op	otional Layers Op	tional Tables			
O Single	Terrain Type Select Terrain	TIN tin_ribseca		-		
O Multiple	DTM Tiles Layer	Null		~		
Apply HEC-G	eoRAS Symbology			OK	Help	Cancel

3.2. Na extensão HEC-GeoRAS selecionar *RAS Geometry > Create RAS Layers >* Selecionar as camadas que serão criadas: *Stream Centerline* (centro geométrico da ribeira); *Bank Lines* (margens da ribeira); *Flow Path Centerlines* (linhas de escoamento); e *XS Cut Lines (secções transversais)* – as camadas são adicionadas ao projeto;

Create RAS Layers		Stream Centerline 1
Layer Setup		Bank Lines 2
Stream Centerline Attributes		Bank Points
XS Cut Line Attributes		Flow Path Centerlines 3
Manning's n Values		XS Cut Lines 4
Levees		Bridges/Culverts
Ineffective Flow Areas	ŝ	Ineffective Flow Areas
Blocked Obstructions		Blocked Obstructions
Bridges/Culverts	•	Landuse Areas
Inline Structures		Levee Alignment
Lateral Structures	×.	Levee Points
Storage Areas	¥.	Interest Structures
Storage Area Connections		Storage Areas
Export RAS Data		Storage Area Connection
Terrain Tiles	•	Terrain Tiles
Utilitier		Terrain Solit Lines

As quatro camadas foram criadas, mas não têm informação associada, pelo que a tarefa seguinte será atribuir a informação correspondente a cada uma.

3.3. Edição da camada *River* (correspondente à linha de água principal da ribeira em estudo):

3.3.1. Iniciar a edição da camada: clique com botão direito do rato na camada "*River*" > *Edit Features* > *Start editing*,

对 Layers			
	Сору	-"	
□ ☑ X X	Remove		
□ 🗹 F	Open Attribute Table Joins and Relates	•	
🖃 🗹 B 🔷	Zoom To Layer		
- 7	Zoom To Make Visible		
	Visible Scale Range		
🖃 🗹 ti	Use Symbol Levels		
	Selection	E.	
-	Label Features		
	Edit Features	•	🏏 Start Editing
	Convert Labels to Annotation		Define New Types Of Features

3.3.2. Confirmar que a informação a desenhar está atribuída à camada pretendida e no formato correto (linha), através da aba "*Create Features*";

Create Features	+ X 📊
📲 📲 <search></search>	- 🧟 🔊 📬
Banks	alog
Banks	
Flowpaths	s
Flowpaths	arc
River	
River	
XSCutLines] g
	eate
Construction Tools	atur
/ Line	S
Rectangle	
Circle	
 Ellipse 	
℃ Freehand	

3.3.3. Para desenhar a camada "*River*" com a maior precisão possível recomenda-se a utilização da ferramenta "*Trace*" da *toolbar "Editor*". Deve desenhar-se a linha de montante para jusante, tendo como base a *shapefile* da linha de água adicionada inicialmente ao projeto. Clicar na tecla F2 para fechar a *polyline* criada e, para finalizar, salvar a edição (*Editor* > *Save Edits* > *Stop Editing*);

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

3.3.4. Identificar a linha de água com recurso à extensão HEC-GeoRAS: selecionar o comando ID > selecionar a linha de água > preencher os campos > clicar OK;

RAS Geometry •	RAS Mapping -	ばҞⅢ咳杀杀┇╸	ApUtilities ▼ Help ▼ Ţ
	🕅 Assign River	and Reach Name	×
	River Name	Ribeira Seca	~
	Reach Name	Principal	
	ок	Help Ca	ncel

3.3.5. Preencher a tabela de atributos da *shapefile "River": RAS Geometry > Stream Centerline Attributes > All*,

🍇 All Stream Tools		>
Stream Centerline	River	~
Terrain	tin_ribseca	~
Stream Profiles	River3D	
ОК	Help	Cancel

3.3.6. Verificar a tabela de atributos da nova shapefile gerada: "River 3D".

F	Riv	er										_
C	Т	Shape *	OID *	Shape_Length	HydrolD	River	Reach	FromNode	ToNode	ArcLength	FromSta	ToSta
ſ	•	Polyline	1	6606.267008	1	Ribeira Seca	Principal	1	2	6606.267	0	6606.267
ſ	Т											

3.4. Edição da camada "Banks" (correspondente às margens da linha de água em estudo):

3.4.1. Iniciar a edição da camada: clique com botão direito do rato na camada "*Banks*" > *Edit Features* > *Start editing*,

2 Bank	Сору	
Linhi X	Remove	
- 0	Open Attribute Table	
✓ tin_ri	Joins and Relates	
69 🔷	Zoom To Layer	
61	Zoom To Make Visible	
52	Visible Scale Range	
43	Use Symbol Levels	
26	Selection +	
17	Label Features	
5	Edit Features	Start Editing

3.4.2. Confirmar que a informação a desenhar está atribuída à camada pretendida e no formato correto (linha), através da aba "*Create Features*";

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

Create Features	+ × 📑
🐨 🕶 Search>	• 🔍 🔊 🚰
Banks	alog
— Banks	
Flowpaths	s
- Flowpaths	arc
River	
River	
River3D] ç
-River3D	eate
Construction Tools	Features
/ Line	
Rectangle	
Circle	
Ellipse	
C Freehand	

3.4.3. Para desenhar a camada "*Banks*" com o maior rigor possível utiliza-se como auxílio a TIN, os ortofotomapas e levantamentos topográficos complementares, quando existentes. Deve desenhar-se em primeiro lugar a margem esquerda e, em seguida, a margem direita. Cada linha deve ser desenhada de montante para jusante. Clicar na tecla F2 para fechar cada *polyline* criada e, para finalizar, salvar a edição (*Editor > Save Edits > Stop Editing*);

3.5. Edição da camada "*Flowpaths*" (correspondente às linhas de escoamento):
3.5.1.Iniciar a edição da camada: clique com botão direito do rato na camada "*Flowpaths*" > *Edit Features* > *Start editing*,

 ✓ Flowpaths ✓ Banks ✓ LinhaAc ✓ Lin,ribse ✓ Elev ✓ 698.3 611.6 525 - 438.3 351.6 	Copy Remove Open Attribute Table Joins and Relates Zoom To Layer Zoom To Make Visible Visible Scale Range Use Symbol Levels Selection	· ·	5
265 - 178.3	Label Features Edit Features	 Start Editin 	g

3.5.2. Confirmar que a informação a desenhar está atribuída à camada pretendida e no formato correto (linha), através da aba "*Create Features*";

Create Features	+ × 📻
📲 🕶 <search></search>	• 🔍 🛞 🚰
Banks	
- Banks	
Flowpaths	S
Flowpaths	arc
River	
River	
River3D	Cr
River3D	eate
	- ¥L ¬
Construction Tools	iture
/ Line	, in the second
Rectangle	
Circle	
Ellipse	
🖉 Freehand	

3.5.3. Para desenhar a camada "*Flowpaths*" com o maior rigor possível utiliza-se como auxílio a TIN, altimetria, ortofotomapas e levantamentos topográficos complementares, quando existentes. Deve desenhar-se em primeiro lugar a linha esquerda (*left overbank*), em segundo lugar a linha correspondente à linha de água (*stream centerline*), com recurso à ferramenta "*trace*", e em último lugar a linha direita (*right overbank*). Cada linha deve ser desenhada de montante para jusante. Clicar na tecla F2 para fechar cada *polyline* criada. Com o término dos desenhos dos três elementos salvar a edição (*Editor > Save Edits > Stop Editing*);

3.5.4. Identificar os *flowpaths* com recurso à extensão HEC-GeoRAS: selecionar o comando *Select Flowpath and Assign LineType Attributes* > selecionar *polyline* > preencher os campos > clicar OK. Proceder à identificação, também da esquerda para a direita.

	🕅 Assign Flowpath T	ype X
Select Flowpath and Assign LineType Attributes	Line Type	Right Left Channel
i RAS Geometry - RAS Mapping - 값 값 대 중 ~	ОК	Right nep Cancer

3.6. Edição da camada "XSCutLines" (correspondente às secções transversais à linha de água):
3.6.1. Iniciar a edição da camada: clique com botão direito do rato na camada "XSCutLines" > Edit Features > Start editing,

E Lavers	Copy Remove			
□ ☑ Rive	Open Attribute Table Joins and Relates	•		
🖃 🗹 Rive 🔷	Zoom To Layer Zoom To Make Visible			
Ban	Visible Scale Range	•		
	Selection	•		
6	Edit Features	•	> Start Editing	

3.6.2. Confirmar que a informação a desenhar está atribuída à camada pretendida e no formato correto (linha), através da aba "*Create Features*";

Create Features	÷ ×	
🐨 - 🖭 <search< td=""><td>· 🧟 🔊</td><td>Cat</td></search<>	· 🧟 🔊	Cat
Flowpaths		alog
Flowpaths		
River	I	S
-River		earo
River3D		Ĕ
-River3D		
XSCutLines		0
-XSCutLines		eat
		e Fe
Construction To	ols	atur
Line		es
Rectangle		
O Circle		
 Ellipse 		
C Freehand		

3.6.3. Para desenhar a camada "XSCutLines" devem traçar-se diversas linhas ao longo da linha de água, de montante para jusante. Cada linha deve ser traçada da esquerda para a direita, intersectando os elementos das camadas *flowpaths, banks* e *river* (perpendicularmente). Deve ter-se em atenção que as linhas não se podem intersectar. Clicar na tecla F2 para fechar a *polyline* criada e, para finalizar, salvar a edição (*Editor > Save Edits > Stop Editing*);

3.6.4. Preencher a tabela de atributos da *shapefile "XSCutLines"*: *RAS Geometry > XSCutLines Attributes > All* (manter os dados predefinidos) > OK.

		All Cross-Section Tools	
Geometry - RAS Mapping - Create RAS Layers	 ★ ↓ ↓ ※ → → # × ★ × 	ilities - Help Stream Centerline River	
Layer Setup		Bank Lines Banks	
Stream Centerline Attribute		Flowpaths Flowpaths	
XS Cut Line Attributes Manning's n Values	River/Reach Names Stationing	XS Cutlines XSCutLines	
Levees	Bank Stations	Terrain tin_ribseca	
Ineffective Flow Areas Blocked Obstructions	Downstream Reach L Elevations	XS Cutlines Profiles XSCutLines3D	
Bridges/Culverts Inline Structures	All Indate Elevations	OK Help	Cancel

4.º Passo Exportação dos dados processados para o HEC-RAS

4.1. Exportação dos dados através da barra de ferramentas da extensão HEC-GeoRAS: *RAS Geometry > Export RAS Data >* OK;

Mes	ssages			
				_
	Start Time	Message Type	Message	
	17:05	Informative	Still exporting	
	17:05	F		
	17:05	Export GIS	Data X	
	17:05	1		
	17:05	GIS data for RAS exported successfully!		
	17:05		sfully exported.	
	17:05			sjo\
	17:05	Intomative	RAS XMI created at: D:\MANUAL_CHEIAS\ARCMAP\sjo\RS	5_sj
	17:05	Informative	RAS SDF created at: D:\MANUAL_CHEIAS\ARCMAP\sjo\R	S_sj
	17:05	Informative	GIS data for RAS exported successfully	
		17:05 17:05 17:05 17:05 17:05 17:05 17:05 17:05 17:05 17:05 17:05	17:05 Export GIS 17:05 Export GIS 17:05 GIS data for 17:05 17:05 17:05 Informative 17:05 Informative 17:05 Informative 17:05 Informative	17:05 Export GIS Data X 17:05 GIS data for RAS exported successfully! 17:05 OK 17:05 OK 17:05 Informative 17:05 Informative 17:05 Informative 17:05 Informative GIS data for RAS exported successfully!

4.2. Guardar o documento ArcMap e fechá-lo.

3.1.2 Simulação do Escoamento no HEC-RAS

Nesta fase do processo entram os valores de rugosidade de Manning, do caudal de ponta de cheia e da inclinação da linha de água. Assim, são dados necessários a esta etapa os apresentados na Tabela 2.1 e na Tabela 3.1.

Tabela 3.1 | Dados do caudal de ponta de cheia (PGRH-Açores 2022-2027) e da inclinação da linha de água principal da bacia hidrográfica da Ribeira Seca

Parâme	etro	Valor
Caudal de Ponta – Op – (m³/s) –	T = 25 anos	30,4
	T = 50 anos	36,7
	T = 100 anos	86,8

Parâmetro	Valor
Inclinação da Linha de água	0,10

Os dados acima apresentados são introduzidos aquando da validação dos dados no HEC-RAS.

5.º Passo Preparação do projeto de trabalho

5.1. Abrir o HEC-RAS;

E HEC-RAS 6.4.1	- (×
File Edit Run View Options GIS Tools Help		
		Han
Project:		6
Plan:		
Geometry:		
Steady Flow:		
Unsteady Flow:		
Description:	SI Units	

5.2. Configurar o sistema de unidades – sistema internacional – para o projeto: *Options > Unit System (US Customary/SI*) > selecionar a opção "*System International (Metric System*)" > OK;

📰 HEC-RAS 6.4.1	
File Edit Run View Options GIS Tools Help	
Program Setup Default Parameters	HEC-RAS
Project: Unit system (US Customary/SI)	Select Units System
Plan: Convert Project Units Geometry: Convert Horizontal Coordinate Systems	US Customary System International (Metric System)
Unsteady Flow: Description:	Set as default for new projects
	OK Cancel Help

5.3. Salvar o projeto HEC-RAS (*File > Save Project As...* > procurar a pasta pretendida > atribuir um título ao projeto > clicar OK);

Save Project As		
Title RS_sjo	File Name RS_sjo.prj	Selected Folder Default Project Folder Documents d:\MANUAL_CHEIAS\ARCMAP\sjo
RS_sjo	RS_sjo.prj	<pre> d:\ MANUAL_CHEIAS ARCMAP Sjo data </pre>
OK Cancel Help	Create Folder	🖃 d: [SIG]

6.º Passo Validação dos dados geométricos importados do ArcMap e introdução de dados

6.1. Importar os dados geométricos gerados no ArcMap: File > Import Geometry Data > GIS Format
 > Adicionar o ficheiro exportado no ArcMap (GIS2RAS) > clicar OK. Selecionar a opção SI (metric)
 units > Next > manter os restantes dados por defeito > clicar em Finished - Import Data,

🤾 Geometric Data		
File Edit Options View Tables	Tools GIS Tools Help	
New Geometry Data Open Geometry Data Save Geometry Data Save Geometry Data As Rename Geometry Title Delete Geometry Data	BC Lines Lin	
Copy to Clipboard Print Import Geometry Data	> GIS Format	ĦEC-RAS 6.4.1 File Edit Run View Options GIS Tools Help ☞ ■ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

n read into a temporary	geometry stru	cture and
e desired import options	When all the	appropriate
ress the Finished - Imp	ort Data button	
t units: SI Units		
as: C US Customary units		
 SI (metric) units 		
port data will not be converted on	import.	
	en read into a temporary d into the current geome e desired import options press the Finished - Import ct units: SI Units as: C US Customary units © SI (metric) units poort data will not be converted on	en read into a temporary geometry stru d into the current geometry file. Step t e desired import options. When all the press the Finished - Import Data button ct units: SI Units as: US Customary units © SI (metric) units port data will not be converted on import.

6.2. Validar as secções transversais (*Cross Section*): *Tools* > *Graphical Cross Section Edit*. Com recurso aos comandos assinalados a vermelho são validados manualmente os "*bank points*" (margens da ribeira) em cada secção. Após a validação das margens (*Left Bank* e *Right Bank*) em todas as secções, guardar as alterações realizadas: *File* > *Save Geometry Data*,

6.3. Atribuir os Valores N de Manning: Tables > Manning's n or k Values. Preencher as três colunas referentes às margens e linha de água, de cada secção transversal, com base nos valores disponibilizados em bibliografia da especialidade (ver Tabela 2.1). Após a finalização do preenchimento da tabela, clicar OK. No presente caso são atribuídos os valores 0,030;

er: Ribeira Seca	- *	🖻 🕮 🔽 Edit	Interpolated XS's	Channel n Values have a light green	
ach: Principal	▼ All	Regions	-	background	
elected Area Edit Op	tions				
Add Constant	Multiply Factor	Set Values	Replace	Reduce to L Ch R	
River Station	Frctn (n/K)	n #1	n #2	n #3	
1 6603.433	n	0.03	0.03	0.03	
2 6597.762	n	0.03	0.03	0.03	
3 6589,984	n	0.03	0.03	0.03	
4 6582.641	n	0.03	0.03	0.03	
5 6575.292	n	0.03	0.03	0.03	
6 6570.382	n	0.03	0.03	0.03	
7 6564.774	n	0.03	0.03	0.03	
8 6557.693	n	0.03	0.03	0.03	
9 6551.544	n	0.03	0.03	0.03	
10 6541.1	n	0.03	0.03	0.03	
11 6533.036	n	0.03	0.03	0.03	
12 6526.575	n	0.03	0.03	0.03	
13 6520.525	n	0.03	0.03	0.03	
14 6515.063	n	0.03	0.03	0.03	
15 6508.218	n	0.03	0.03	0.03	
16 6502.533	n	0.03	0.03	0.03	
17 6497.257	n	0.03	0.03	0.03	
18 6493.124	n	0.03	0.03	0.03	
19 6489.589	n	0.03	0.03	0.03	
20 6486.234	n	0.03	0.03	0.03	
21 6482.268	n	0.03	0.03	0.03	
22 6478.523	n	0.03	0.03	0.03	
23 6474.019	n	0.03	0.03	0.03	
4 6469.5	n	0.03	0.03	0.03	

6.4. Verificar a tabela *Reach Lenghts*. *Tables > Reach Lenghts*. deve verificar-se se os valores foram corretamente exportados do ArcMap (valores dos LOB - "*Left Over Bank*", "Channel" e ROB - "*Right Over Bank*": distância da intersecção da secção transversal com o *flowpath* até à

intersecção da seguinte secção transversal com o *flowpath*). Caso existam campos com valores inferiores ou igual a 0, deve-se calcular o valor correto (no ArcMap) e introduzi-lo manualmente nesta tabela. Após a verificação estar concluída clicar OK;

r: Ribeira Seca	- * •	Edit Interpolated	XS's	
th: Principal	-			
ected Area Edit Option	s			
dd Constant Mui	tiply Factor Set	Values Replace		
Diver Station	108	Channel	POR	
6602 422	LOD	Charmer	E 69	-
6507 762	8.06	7 78	7.40	
6589.984	7.32	7.34	7.37	
6582.641	7.64	7.35	7.01	
6575.292	4.57	4.91	5.3	
6570.382	5.27	5.61	6.03	
6564.774	6.79	7.08	7.46	
6557.693	5.75	6.15	6.18	-
6551.544	9.72	10.44	11.3	
6541.1	8.31	8.06	7.87	
6533.036	6.46	6.46	6.49	
6526.575	5.47	6.05	6.57	
6520.525	6.03	5.46	4.97	
6515.063	6.72	6.84	6.93	
6508.218	5.86	5.68	5.48	
6502.533	5.32	5.28	5.19	
6497.257	3.99	4.13	4.3	
6493.124	3.32	3.53	3.75	
6489.589	3.28	3.36	3.43	
6486.234	4.12	3.97	3.83	
6482.268	3.49	3.74	4	
6478.523	4.5	4.5	4.54	
6474.019	4.2	4.52	4.72	
6469.5	3.59	3.96	4 77	

6.5. Filtragem dos pontos das secções transversais – perfis que contenham 500 ou mais pontos serão redimensionados para o valor máximo permitido de pontos (499): *Tools > Cross Section Points Filter >* selecionar a aba "*Multiple Locations*" > clicar na opção "*Filter Points on Selected XS*". A filtragem será, desta forma, realizada de forma automática. Guardar a geometria final: *File > Save Geometry Data*.

🗢 Cro	oss Section Point Filter						×
Single	Location Multiple Locations	1					
			Selected Locations	(823 select	ed)		
River:	Ribeira Seca	-	Ribeira Seca Princip Ribeira Seca Princip	al 6603.433			
Reach:	Principal	-	Ribeira Seca Princip	al 6589.984			
		_	Ribeira Seca Princip	al 6582.641			
River St	ta.: (ALRS)		Ribeira Seca Princip	al 6575.292			
	6603.433 (10)		Ribeira Seca Princip	al 6570.382			
	6597.762 (8)	' □ →	Ribeira Seca Princip	al 6564.774			
	6589.984 (16)		Ribeira Seca Princip	al 6557.693			
	6582.641 (15)		Ribeira Seca Princip	al 6551.544			
	6575.292 (13)		Ribeira Seca Princip	al 6541.1			
	6570.382 (13)		Ribeira Seca Princip	al 6533.036			
	6564.774 (13)		Ribeira Seca Princip	al 6526.575			
	6557.693 (14)		Ribeira Seca Princip	al 6520.525			
	6551.544 (14)		Ribeira Seca Princip	al 6515.063			
	6541.1 (14)		Ribeira Seca Princip	al 6508.218			
	6533.036 (14)		Ribeira Seca Princip	al 6502.533			
	6526.575 (16)		Ribeira Seca Princip	al 6497.257			
	(19)		Ribeira Seca Princip	al 6493.124			
Near a Number	and Colinear Filter Minimize /	Area Cha n down t	nge o: 499 Filter Poir	nts on Selected XS			
Deeker	- Y5				OK	1 0	ancel

7.º Passo Gerar as áreas inundáveis para um período de retorno de 25 anos

7.1. Introduzir os dados de fluxo/escoamento – configurar o Steady Flow Data. Edit > Steady Flow Data. Atribuir o valor do caudal de ponta referente ao tempo de retorno de 25 anos (cf. Tabela 3.1) > Clicar em "Reach Boundary Conditions" > introduzir o valor da inclinação média da linha de água (cf. Tabela 3.1) nos campos "Upstream" e "Downstream". Guardar os dados introduzidos: File > Save Flow Data,

📑 н	EC-RA	S 6.4.1							
File	Edit	Run	View	Options	GIS Tools	Help			
2		Geom	etric Da	ata					
Projec		Steady Flow Data							
Plan:		Quasi Unsteady Flow (Sediment)							
Geom		Unsteady Flow Data							
Stead		Sediment Data							
Unste		Weter Ovelite Date							
Descri	ί	water	Quality	Data					

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

Steady Flow Dat	ta - flow				_		X	
File Options Hel	p							
Description :	•					Apply (Data	
Enter/Edit Number of D	Profiles (22000 max)	1 Reach B	oundary Conditions					
Enter/Edit Number of P	ronies (32000 max):							
Diver: Dibeira Seca	Locato	ons of Flow Data Chan	iges	Add Multiple	1			
River. Ribeira Seca	- Diver	Sta . 6603 433	Add A	Flow Change Location				
Reach. Jennepai		318.10003.455		la Manage and Elaw Da				
River	Reach R	S PF 1	Pron	le Names and Flow Ra	ites			
1 Ribeira Seca	Principal 6	603.433 <mark>30.4</mark>						
	Steady Flow Boun	dary Conditions						
	Set boundary f	or all profiles		C Set boundary	y for one pro	file at a	time	
			Available Extern	al Boundary Condtio	on Types			
	Known W.S.	Critical De	epth	Normal Depth	Rating	g Curve	1	Delete
			acted Roundary	Condition Locations	and Types		-	
	River	Reach	Profile	Upstrear	n n		Downst	ream
Edit Steady flow data	Ribeira Seca	Principal	all	Normal Depth S =	0.10	Normal D	epth S	= 0.10
	Steady Flow Reach	n-Storage Area Opt	imization		OK		ancel	Help
	Select Boundary co	ndition for the dowr	nstream side of s	elected reach.				
		[™] १→ Steady म	Flow Data - flow					
		File Option	ns Help					
		New F	low Data					
		Open	Flow Data					
		Save F	low Data					
		Save F	low Data AS					
		Renam	ne Flow Title					
		Delete	Flow Data					

7.2. Realizar a simulação "Steady Flow Analysis": Run > Steady Flow Analysis > selecionar a opção
"Mixed" > clicar em "Compute". Guardar a simulação: File > Save Plan,

📑 н	EC-RA	S 6.4.1				
File	Edit	Run	View	Options	GIS Tools	Help
2			Steady	Flow Anal	ysis	
Unsteady Flow Analysis						
Project: Quasi-Unsteady Analysis (Sediment)						
Diane		-				

HEC-RA	AS Finished Computations					-		×		
Write Geom Layer: COM	etry Information MPLETE									
Steady Flow	v Simulation	_						_		
River: Reach:	Ribeira Seca Principal	RS: Node Type:	2.008 Cross	806 Section						
rofile:	PF 1									
imulation:	1/1			Computing supercr	itical profile			_		
Computatio	n Messages									
Plan: 'Pla Simulation Writing Pla Completed Writing Ge	n 01' (RS_sjo.p01) started at: 25jul2023 10:38:31 AM n GIS Data Writing Plan GIS Data opertru									
Computing Bank lines	Bank Lines			3 Steady Flow Analysis					-	Х
Computing Edge Lines	Edge Lines generated in 180 ms			File Options Help						
Computing VS Interno	XS Interpolation Surface			Plan:			Short	ID:		
Completed	Writing Geometry			Geometry File:	geometry					 •
Completed	Writing Event Condition Data			Steady Flow File:	flow					
Steady F	ow Simulation HEC-RAS 6.4.1 J	une 2023		Flow Regime	Plan Descriptio	n —				
Finished St	eady Flow Simulation			Supercritical Mixed Optional Programs						
Computa	tions Summary									
Computatio	on Task Geometry, Flow and Plan	Time(hh:mm	2	Floodplain Mapping						×
Steady Flo	w Computations		1		Com	pute				
Completer	rocess		7	Select flow regime for steady flo	ow computations					
			8	Steady Flaw Analysia		1				
				Steady Flow Analysis						
			Ľ	New Dise						
Pause	Make Snapshot of R	esults		Open Plan		-	Clos	e		
				Save Plan	try	_			1	
				Save Plan As						
				Rename Plan Title)escrip	ti				
				Delete Dian						
				Delete Plan						

7.3. Visualizar o resultado da simulação clicando no comando "*View Cross Sections*", sinalizado a vermelho. Nesta fase a informação é apresentada em gráfico, correspondendo ao preenchimento com água das secções transversais definidas.

8.º Passo Exportação dos dados resultantes da simulação para o ArcMap

8.1. Exportação dos dados gerados pela simulação do escoamento (em formato .sdf): File > Export GIS Data > em "Results Export Options" selecionar "Water Surfaces" e "Water Surface Extents" > clicar "Export Data";

	GIS Export			
	Export File: D: MANUAL_CHEIAS ARC	IAP\sjo\RS_sjot25.RASexport.sdf		Browse
	-Reaches and Storage Areas to Export			
	Select Reaches to Export	Reaches (1/1)		
	Select Storage Areas to Export	Storage Areas (0/0)		
	Results Export Options			
	I✓ Water Surfaces I✓ Wate	r Surface Extents	Select Profiles to	b Export
HEC-RAS 6.4.1	Profiles to PF 1 Export:			
File Edit Run View Options				
New Project	Flow Distribution (823/823 have deta	led values) A	dditional Information	
Open Project	Velocity	Г	Ice Thickness (where a	available)
Save Project	Shear Stress			
Save Project As				
Rename Project Title	River (Stream) Centerlines			
Delete Project	Cross Section Surface Lines	Addition	nal Properties	
Project Summary	User Defined Cross Sections	Reach Lengths		
Impact HEC 2 Data	(all XS's except Interpolated XS's)	Bank Stations (improves vel	ocity, ice, shear and pow	ver mapping)
Import HEC-2 Data	Interpolated Cross Sections	Levees		
Import HEC-KAS Data	Entire Cross Section Channel only	Blocked Obstructions		
Generate Report	channel of lly	Manning's n		
Export GIS Data				
Export to HEC-DSS		Export Data	Close	Help

8.2. Guardar o projeto HEC-RAS e fechá-lo.

HEC-RAS 6.4.1	X
New Project Open Project Save Project Save Project As Rename Project Title Delete Project Project Summary	Imanual_CHEIAS\ARCMAP\sjo\RS_sjo.prj Imanual_CHEIAS\ARCMAP\sjo\RS_sjo.p01 Imanual_CHEIAS\ARCMAP\sjo\RS_sjo.g01 Imanual_CHEIAS\ARCMAP\sjo\R

3.1.3 Modelação das Áreas Inundáveis no ArcMap

Na presente etapa os dados dos perfis de inundação são convertidos em informação espacial no ArcMap, com recurso à extensão HEC-GeoRAS.

9.º Passo Preparação do projeto de trabalho

- 9.1. Abrir o documento ArcMap guardado anteriormente, no passo 4.2;
- 9.2. Converter o ficheiro .sdf para formato .xml: selecionar o ficheiro .sdf exportado do HEC-RAS;

AS Mapping 🔹 😿 🔛 🏈 🤝 🖨 🖓 ApUtilities 🔹 He	lp∙ _∓
Export SDF to XML	×
D:\MANUAL_CHEIAS\ARCMAP\sjo\RS_sjot25.RASexport.sdf	2
D:\MANUAL_CHEIAS\ARCMAP\sjo\RS_sjot25.RASexport.xml	
OK Close]
	AS Mapping V K K III S V ApUtilities V He Export SDF to XML D:\MANUAL_CHEIAS\ARCMAP\sjo\RS_sjot25.RASexport.sdf D:\MANUAL_CHEIAS\ARCMAP\sjo\RS_sjot25.RASexport.xml OK Close

- 9.3. Configurar o *plugin RAS Mapping. RAS Mapping > Layer Setup*:
 - 9.3.1. Selecionar New Analysis e escrever um nome para o novo Data Frame a ser criado;
 - 9.3.2. Em RAS GIS Export File, adicionar o ficheiro convertido em .xml no passo 9.2;
 - 9.3.3.Em *Terrain Type*, selecionar a opção TIN, de seguida selecionar a TIN correspondente aos dados de entrada (tin_ribseca);
 - 9.3.4. Em *Output Directory,* escolher a pasta em que se pretende guardar a informação que será processada pelo *RAS Mapping,*
 - 9.3.5. Em Rasterization Cell Size, definir o tamanho 5.

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

🔣 Layer Setup for HEC	C-RAS PostProcessing ×
Analysis Type C Existing Analysis New Analysis	RS_sjo_t25
RAS GIS Export File Terrain	D:\MANUAL_CHEIAS\ARCMAP\sjo\RS_sjot25.RASexpor
 Single 	Terrain Type O TIN O GRID Terrain D:\MANUAL_CHEIAS\ARCMAP\sjo\data\ti
⊖ Multiple	DTM Tiles Layer
Output Directory	D:\MANUAL_CHEIAS\ARCMAP\sjo\RS_sjo_t25
Geodatabase	RS_sjo_t25.gdb
Rasterization Cell Size	5 (map units)
	OK Help Cancel

9.4. Importar os dados resultantes da pré-modelação realizada: *RAS Mapping > Import RAS Data >* OK.

apping • 📈 🙀 🗸	25/07/2023 11:43:02 25/07/2023 11:43:02	Informative	Trying to create velocity points	
apping T 🔂 RM 🛄 🦉 🤝	25/07/2023 11:43:02			
aver Setup		HEC-GeoF	200	
ayer setup	25/07/2023 11:43:02	li li	~	
nport BAS Data	25/07/2023 11:43:02	Ir DAS data	s	
	25/07/2023 11:43:02	Ir KAS Gata	imported to dis successiony:	
fundation Mapping	25/07/2023 11:43:06	lr.		
elocity Mapping	25/07/2023 11:43:06	le .	ОК	
e Mapping	25/07/2023 11:43:06	Informative	Converting TIN to raster	
hear Stress Manning	25/07/2023 11:43:07	Informative	RAS data imported to GIS successfully!	
*				
tream Power Mapping				
□				
BankPoints				
•				
Water Surface Extents				
□ 🗹 River2D				
_				A Charles and the
				A 4 444 444 444 4
XS Cut Lines				
☑ XS Cut Lines				
 ☑ XS Cut Lines ☑ Bounding Polygon 				

10.º Passo Modelação das áreas inundáveis

10.1. Criação da TIN com base nos dados importados do HEC-RAS: *RAS Mapping > Inundation Mapping > Water Surface Generation*,

10.2. Modelação das áreas inundáveis: *RAS Mapping > Inundation Mapping > Floodplain Delineation Using Rasters*,

RAS Mapping - 📈 🙀 💐	ž 🚽 🕈	🛟 ApUtilities - Help - 💂
Layer Setup	Ψ×	
Import RAS Data		
Inundation Mapping	•	Water Surface Generation
Velocity Mapping		Floodplain Delineation Using Rasters
Ice Mapping		1
Shear Stress Mapping		
Stream Power Mapping		
Visualization	•	
Postprocessing Utilities	•	

- 10.3. Verificar e validar as áreas inundáveis com recurso a trabalho de campo e com auxílio das ocorrências históricas; confirmar a inexistência de erros associados à triangulação da TIN;
- 10.4. Uniformizar os limites das áreas inundáveis. Os limites das áreas inundáveis devem ser suavizados/aligeirados, evitando-se formas/limites de área inundável "pixelizados"/geométricos.
- 11.º Passo Produzir as áreas inundáveis para um período de retorno de 50 anos
 - 11.1. Repetir o processo a partir do 7.º Passo, com a introdução do valor do caudal de ponta de cheia correspondente: Q=36,7 m³/s.
- 12.º Passo Produzir as áreas inundáveis para um período de retorno de 100 anos
 - Repetir o processo a partir do 7.º Passo, com a introdução do valor do caudal de ponta de cheia correspondente: Q=86,8 m³/s.

3.2 Ribeira Seca – Linha de Água Principal e Afluentes

3.2.1 Processamento de Dados no ArcMap

Conforme já referido, a informação deverá ser guardada e trabalhada, preferencialmente, na raiz de uma unidade de disco rígido diferente da unidade onde consta o sistema operativo. A transferência da versão mais recente da extensão HEC-GeoRAS 10.2 é realizada em: <u>https://www.hec.usace.army.mil/software/hec-georas/downloads.aspx</u> e de seguida corre-se o executável. Seguir o passo 2.1 para adicionar o Hec-GeoRAS à barra de ferramentas (*toolbar*) do ArcMap.

1.º Passo Preparação dos dados de entrada

- 1.1. Gerar TIN para a bacia hidrográfica em análise;
- 1.2. Editar a *shapefile* da linha de água, de forma que a informação espacial nela contida seja referente apenas às linhas de água em estudo linha de água principal e principais afluentes (não são considerados os afluentes dos afluentes).

2.º Passo

Preparação do projeto de trabalho

2.1. Abrir o ArcMap e adicionar a extensão HEC-GeoRAS à barra de ferramentas (*toolbar*) do ArcMap;

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

Ī	Customize	Windows	Help	Advanced Editing
	Toolba	rs	•	Animation
L	Extensi	ons		ApUtilities
	Add-In	Manager		ArcScan
	Custor	nize Mode		COGO
	Style M	lanager		Data Driven Pages
	Acable	Ontine	-	Data Frame Tools
-	Arcivia	p Options	-	Distributed Geodatabase
			~	Draw
			~	Edit Vertices
			~	Editor
				Effects
				Feature Cache
				Feature Construction
				Geocoding
				Geodatabase History
				Geometric Network Editing
			~	Georeferencing
				Geostatistical Analyst
				GPS
				Graphics
KAS Geometry + KAS Mapping + 💦 👫 👭 🍣 🔝 🛱	ApUtiliti	es • Help •		HEC-GeoRAS

- 2.2. Adicionar os dados de entrada (TIN e shapefile das linhas de água) ao documento do ArcMap
 - por predefinição o projeto assume o sistema de coordenadas dos dados de entrada;

ridd bara								
.ook in: อ	data	~	<u>د</u>	1	.	🖴	🛍	5
tin_ribseca								
BH_RibSec	a.shp							
Name:							A	dd

2.3. Salvar o documento (*File > Save As... >* Atribuir nome ao ficheiro e guardá-lo na pasta pretendida).

3.º Passo Criar as camadas geométricas

3.1. Na extensão HEC-GeoRAS selecionar *RAS Geometry > Layer setup >* em "*Required Surface*" selecionar a TIN da bacia hidrográfica;

	Required Layers Opt	ional Layers Opti	onal Tables	
Single	Terrain Type Select Terrain	• TIN		
) Multiple	DTM Tiles Layer	Null	~	

3.2. Na extensão HEC-GeoRAS selecionar *RAS Geometry > Create RAS Layers >* Selecionar as camadas que serão criadas: *Stream Centerline, Bank Lines, Flow Path Centerlines, e XS Cut Lines* – as camadas são adicionadas ao projeto;

Create RAS Layers		Stream Centerline 1
Layer Setup		Bank Lines 2
Stream Centerline Attributes	•	Bank Points
XS Cut Line Attributes	•	Flow Path Centerlines 3
Manning's n Values		XS Cut Lines 4
Leveer		Bridges/Culverts
Ineffective Flow Areas		Ineffective Flow Areas
Blocked Obstructions	÷.	Blocked Obstructions
Bridges/Culverts	•	Landuse Areas
Inline Structures		Levee Alignment
Lateral Structures		Levee Points
Storage Areas		Inline Structures
Storage Area Connections		Storage Areas
Export RAS Data		Storage Area Connection
Terrain Tiles	•	Terrain Tiles
Utilities		Terrain Split Lines

As quatro camadas foram criadas, mas não têm informação associada, pelo que a tarefa seguinte é atribuir a informação correspondente a cada uma.

- 3.3. Edição da camada *River* (correspondente às linhas de água da ribeira em estudo) a metodologia utilizada para a delimitação das linhas de água consiste em desenhar de montante para jusante e separar individualmente cada linha de água sempre que as mesmas se intersetem:
 - 3.3.1. Iniciar a edição da camada: clique com botão direito do rato na camada "*River*" > *Edit Features* > *Start editing*,

3.3.2. Confirmar que a informação a desenhar está atribuída à camada pretendida e no formato correto (linha), através da aba "*Create Features*";

Create Features	+ × 📊
🐨 📲 <search></search>	• 🔍 🔊 🔓
Banks	
Banks	
Flowpaths	S
Flowpaths	arc
River	
-River	
XSCutLines	
	· eat
	- VI 8
Construction Tools	atur
/ Line	es
Rectangle	
Circle	
 Ellipse 	
2 Freehand	

3.3.3. Para desenhar a camada "*River*" com a maior precisão possível, recomenda-se a utilização da ferramenta "*Trace*" da *toolbar* "*Editor*". Devem desenhar-se as linhas de montante para jusante e da esquerda para a direita até ao ponto de interseção com outra linha de água, desenhando-se em primeira instância as linhas do curso de água principal e de seguida os afluentes. Assim, a Ribeira Seca foi dividida em cinco *polylines*, correspondendo cada uma a uma linha de água – o curso de água principal foi separado em três *polylines* considerando como foz (secção de referência) os pontos de interseção com os afluentes; e cada um dos dois afluentes considerados perfazem as restantes duas *polylines* desenhadas. Para fechar cada *polyline* criada, clicar na tecla F2 e, assim que finalizado o desenho de todas as linhas de água, salvar a edição (*Editor > Save Edits > Stop Editing*);

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

3.3.4. Identificar as linhas de água criadas com recurso à extensão HEC-GeoRAS: selecionar o comando ID > selecionar a linha de água > preencher os campos > clicar OK. No presente caso foram atribuídos cinco nomes (*Reach Name*) resultantes da posição geográfica de cada linha de água: às três linhas de água correspondentes ao curso de água principal, foram atribuídos os nomes, de montante para jusante: "*Up Reach*"; "*Mid Reach*" e "*Down Reach*"; em relação aos afluentes, foram atribuídos os nomes "*Mid Tributary*" e "*Down Tributary*".

Em relação ao "*River Name*", não é permitido repetir o nome da linha de água, sendo que, a atribuição feita baseia-se na junção de siglas, neste caso de Ribeira Seca e "*Reach Name*". Ex; RSUR (Ribeira Seca Up Reach);

3.3.5. Preencher a tabela de atributos da *shapefile "River": RAS Geometry > Stream Centerline Attributes > All*,

🎇 All Stream Tools	×
Stream Centerline	River ~
Terrain	tin_ribseca 🗸
Stream Profiles	River3D
ОК	Help Cancel

3.3.6. Verificar a tabela de atributos da nova shapefile gerada: "River 3D".

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

able		_										<u> </u>
•	間・	P 🐼 🛛	1 ∰ X									
River3D												
Sh	nape *	OID *	Shape_Length	Riv2DID	HydroID	River	Reach	FromNode	ToNode	ArcLength	FromSta	ToSta
Polylin	ine Z	1	4763.514995	1	6	RSUR	UpReach	1	2	4763.515	0	4763.515
Polyli	ine Z	2	1303.765719	2	7	RSMR	MidReach	2	3	1303.766	0	1303.766
Polyli	ine Z	3	534.487849	3	8	RSDR	DownReach	3	4	534,488	0	534.4879
Polyli	ine Z	4	4378.354771	4	9	RSMT	MidTributary	5	2	4378.355	0	4378.355
Polyli	ine Z	5	999.454392	5	10	RSDT	DownTributary	6	3	999.454	0	999.4544

3.4. Edição da camada "Banks" (correspondente às margens das linhas de água em estudo):

3.4.1. Iniciar a edição da camada: clique com botão direito do rato na camada "*Banks*" > *Edit Features* > *Start editing*,

2 Bank	Сору			
Linhi X	Remove			
	Open Attribute Table			
✓ tin_ri	Joins and Relates	•		
69 🔷	Zoom To Layer			
61	Zoom To Make Visible			11 Same
52	Visible Scale Range	•		
43	Use Symbol Levels			
26	Selection	•		
17	Label Features			
91	Edit Features	•	🥢 Start Editing	

3.4.2. Confirmar que a informação a desenhar está atribuída à camada pretendida e no formato correto (linha), através da aba "*Create Features*";

Create Features	+ × -	
📲 📲 <search></search>	- 🧟 🔊	Cat
Banks		aloo
— Banks		
Flowpaths		S
Flowpaths		arc
River		-
River		2
River3D		9
River3D		eate
	- 80	Fe
Construction Tools		ature
/ Line		ŝ
Rectangle		
Circle		
 Ellipse 		
C Freehand		

3.4.3. Para desenhar a camada "*Banks*" com o maior rigor possível utiliza-se como auxílio a TIN, altimetria, ortofotomapas e levantamentos topográficos complementares, quando existentes. Deve desenhar-se em primeiro lugar a margem esquerda e em segundo lugar

a margem direita para cada linha de água do curso principal e de seguida as margens para os afluentes. Cada linha deve ser desenhada de montante para jusante. Cada margem deve ser desenhada até à interseção da próxima linha de água, sendo que as próximas margens a desenhar, devem ter como ponto de partida o final das primeiras margens (ponto de interseção). Clicar na tecla F2 para fechar cada *polyline* criada e, para finalizar, salvar a edição (*Editor > Save Edits > Stop Editing*);

3.5. Edição da camada "*Flowpaths*" (correspondente às linhas de escoamento):

3.5.1. Iniciar a edição da camada: clique com botão direito do rato na camada "*Flowpaths*" > *Edit Features* > *Start editing*,

✓ Flowpaths ✓ Banks ×	Copy Remove	
LinhaAg	Open Attribute Table Joins and Relates	• <i>• • • • • • • • • • • •</i>
✓ tin_ribse Elev 698.3	Zoom To Layer Zoom To Make Visible Visible Scale Range	,
525 -	Use Symbol Levels	
351.6	Selection	·
178.3	Edit Features	Start Editing

3.5.2. Confirmar que a informação a desenhar está atribuída à camada pretendida e no formato correto (linha), através da aba "*Create Features*";

Create Features + ×	
🏋 📲 <search> 🔹 🍳 🔊</search>	Cat
Banks	alog
Banks	
Flowpaths	S
Flowpaths	earc
River	E
River	
River3D	9
River3D	eat
	Fe
Construction Tools	atur
/ Line	es
Rectangle	
Circle	
 Ellipse 	
℃ Freehand	

3.5.3. Para desenhar a camada "*Flowpaths*" com o maior rigor possível utiliza-se como auxílio a TIN, altimetria, ortofotomapas e levantamentos topográficos complementares, quando existentes. Deve desenhar-se em primeiro lugar a linha esquerda, em segundo lugar a linha correspondente à linha de água (com recurso à ferramenta "trace"), e em último lugar a linha direita, para cada linha do curso de água principal e de seguida para os afluentes. Cada linha deve ser desenhada de montante para jusante. Cada linha deve ser desenhada de montante para jusante. Cada linha deve ser desenhada até à interseção da próxima linha de água, sendo que as próximas linhas a desenhar, devem ter como ponto de partida o final das primeiras linhas (ponto de interseção). Clicar na tecla F2 para fechar cada *polyline* criada. Com o término dos desenhos dos três elementos para cada linha de água salvar a edição (*Editor > Save Edits > Stop Editing*);

3.5.4. Identificar os *flowpaths* com recurso à extensão HEC-GeoRAS: selecionar o comando *Select Flowpath and Assign LineType Attributes* > selecionar *polyline* > preencher os campos, selecionando o tipo de linha (*Line type*): *Left, Channel*, ou *Right* > clicar OK. Proceder a esta identificação, também, da esquerda para a direita para cada linha de água.

wpatns					
Shape *	OID *	Shape_Length	LineType		
Polyline	1	4763.514983	Channel		
Polyline	2	1303.765715	Channel		
Polyline	3	534.487849	Channel		
Polyline	4	4378.354764	Channel	10001	
Polyline	5	999.454391	Channel	Reg Assign Flowpat	n iype
Polyline	6	3971.154167	Left		
Polyline	7	4041.879656	Right		
Polyline	8	4303.640845	Left	Line Type	Bight
Polyline	9	4523.621277	Right	Line Type	r ugen
Polyline	10	1260.69576	Left		Left
Polyline	11	1189.616006	Right		Channel
Polyline	12	927.083148	Left		Bight
Polyline	13	1021.91353	Right	OK	right ricip Calic
Polyline					
Polyline	RAS Geo	metry - RAS Mappin	a - 🔀 😽	13	
		incer) is is inappin	J ID N RMN	• ~ ~ ~	

LineType Attributes

3.6. Edição da camada "XSCutLines" (correspondente às secções transversais às linhas de água)
3.6.1. Iniciar a edição da camada: clique com botão direito do rato na camada "XSCutLines" > Edit Features > Start editing,

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

Lavers E XSCutting	ar			
E Flov X	Remove			
□ 🗹 Rive	Open Attribute Table Joins and Relates	•		
🖃 🗹 Rive 🔷	Zoom To Layer			
🖃 🗹 Ban	Zoom To Make Visible Visible Scale Range	•		
🗆 🗖 Link	Use Symbol Levels			
□ 🗹 tin_	Selection Label Features	•		
6	Edit Features	• 🧳	Start Editing	

3.6.2. Confirmar que a informação a desenhar está atribuída à camada pretendida e no formato correto (linha), através da aba "*Create Features*";

Create Features	+ × -	
📲 📲 <search></search>	- 🧟 🔊 -	2
Flowpaths		2
Flowpaths		-
River		2
-River	eald	
River3D		5
-River3D	(B)	2
XSCutLines	(i	5
	I leate	
Construction Tools		
/ Line	ä	2
Rectangle		
Circle		
 Ellipse 		
🖓 Freehand		

3.6.3. Para desenhar a camada "XSCutLines" devem traçar-se diversas linhas transversais ao longo das linhas de água, começando pelo curso de água principal e terminando com os afluentes, de montante para jusante. Cada linha deve ser traçada da esquerda para a direita, intersectando os elementos das camadas: *flowpaths, banks* e *river* (perpendicularmente). Deve ter-se em atenção que as linhas /XSCutlines/ não se podem intersectar com outras XSCutLines ou com *Banks/ Flowpaths* de diferentes linhas de água. Clicar na tecla F2 para fechar a *polyline* criada e, para finalizar, salvar a edição (*Editor* > *Save Edits* > *Stop Editing*);

3.6.4. Preencher a tabela de atributos da *shapefile "XSCutLines": RAS Geometry > XSCutLines Attributes > All* (manter os dados predefinidos) > OK.

			All Cross-Section Te	ools	;
AS Geometry TRAS Mapping T	• 火 笑 打	↓ 🗧 🗢 🗢 🛟 ApUtilities - Help ∓ ×	Stream Centerline	River	~
Layer Setup Stream Centerline Attributes			Bank Lines	Banks	~
XS Cut Line Attributes	•	River/Reach Names	Flowpaths	YSCutlines	~
Manning's n Values Levees		Stationing Bank Stations	Terrain	tin ribseca	~
Ineffective Flow Areas	•	Downstream Reach Lengths	XS Cutlines Profiles	XSCutLines3D	
Biocked Obstructions Bridges/Culverts	•	Elevations			
Inline Structures	•	Update Elevations	ОК	Help Cancel	

4.º Passo Exportação dos dados processados para o HEC-RAS

4.1. Exportação dos dados através da barra de ferramentas da extensão HEC-GeoRAS: *RAS Geometry > Export RAS Data >* OK;

Geometry 🕶 RAS Mapping 👻 🕞	RM	RAS FI	le D:\RibSeca_Prin	cipalAfluentes\RSPA_	HecHas		
Create RAS Layers	•	Messa	ages				
Layer Setup			Start Time	Message Type	Message		
Stream Centerline Attributes	•		15:08	Informative	River has been exported		
XS Cut Line Attributes	_		15:08	r		1	
AS Cut Line Attributes			15:08	Export GIS	Export GIS Data X		
Manning's n Values	•		15:08				
Levees	•		15:08	GIS data f			
Ineffective Flow Areas	•		15:08	1		sfully exported.	
Blocked Obstructions	•		15:08	1	ок	Seca_PrincipalAfluentes\GIS2	
Dridees (Cuberts	_		15:08	Intomative	RAS XMI created at: D:\RibSeca_	PrincipalAfluentes\RSPA_Hec	
Bridges/Cuiverts	,		15:08	Informative	RAS SDF created at: D:\RibSeca	_PrincipalAfluentes\RSPA_Hec	
Inline Structures	•		15:08	Informative	GIS data for RAS exported succes	ssfully	
Lateral Structures	•						
Storage Areas	• L			111			
Storage Area Connections							

4.2. Guardar o documento ArcMap e fechá-lo.

3.2.2 Simulação do Escoamento no HEC-RAS

Nesta fase do processo entram os valores de rugosidade de Manning (ver Tabela 2.1), do caudal de ponta de cheia e da inclinação de cada linha de água. Para calcular os caudais de ponta de cheia, para o período de retorno de 25, 50 e 100 anos, para cada secção de referência criada no âmbito do desenho das cinco linhas de água (cf. passo 3.3.3. da Edição da camada *River* do capítulo 3.2.1) recorreu-se à Fórmula Racional (a fórmula racional tem em conta a área da bacia (A, em km²), a ocupação do solo (através do coeficiente de escoamento C, adimensional) e a intensidade de precipitação (I, em mm/h): **Qp = 0,278. C.I.A**.). Nesse contexto, foram desenhadas cinco bacias hidrográficas, referentes à área de contribuição de cada linha de água considerada, conforme se representa na Figura 3.2.

Figura 3.2 | Identificação das sub-bacias hidrográficas da Ribeira Seca, desenhadas para o cálculo do caudal de ponta de cheia para as secções de referência consideradas para a modelação com linhas de água afluentes

A Tabela 3.2 apresenta os dados do caudal de ponta de cheia de cada sub-bacia individualmente e da inclinação das linhas de água necessários a esta etapa.

Tabela 3.2 | Dados dos caudais de ponta de cheia e da inclinação das linhas de água definidas para o exercício de modelação hidrológica com linhas de água afluentes da bacia hidrográfica da Ribeira Seca

Linha de água	Parâmetro		Valor
		T = 25 anos	11,44
Lip Poach	Caudal de Ponta – Op (m ³ /s)	T = 50 anos	14,00
ор кеасн	(1173)	T = 100 anos	16,17
	Inclinação da Linha d	0,08	
	Counted de Douctes - Oo	T = 25 anos	4,174
Mid Peach	Caudal de Ponta – Op	T = 50 anos	5,11
	(1173)	T = 100 anos	5,90
	Inclinação da Linha d	0,12	
Down Reach	Caudal de Ponta – Op	T = 25 anos	3,13

Linha de água	Parâmetro		Valor
	(m³/s)	T = 50 anos	3,83
		T = 100 anos	4,43
	Inclinação da Linha	0,21	
	Caudal de Ponta – Op (m ³ /s) $T = 25 \text{ anos}$ T = 50 anos T = 100 anos	T = 25 anos	22,40
Mid Tributany		T = 50 anos	27,41
		31,67	
	Inclinação da Linha	de água	0,11
	Couldel de Doote	T = 25 anos	2,86
	Caudal de Ponta – Op (m³/s)	T = 50 anos	3,50
	Inclinação da Linha de água $0,11$ DutaryCaudal de Ponta - Op (m³/s)T = 25 anos2,86T = 50 anos3,50T = 100 anos4,05Inclinação da Linha de água0,14	4,05	
		0,14	

Os dados acima apresentados são introduzidos aquando da validação dos dados no HEC-RAS.

5.º Passo Preparação do projeto de trabalho

5.1. Abrir o HEC-RAS;

HEC-RAS 6.4.1	- 0	×
File Edit Run View Options GIS Tools Help		
☞■⊻☆ェュ@♥₴₺₰₰₡₡ ♥ ♥₺₽ピ♥₽₩		₩ ₩
Project:		
Plan:		
Geometry:		
Steady Flow:		
Unsteady Flow:		
Description:	SI Units	

5.2. Configurar o sistema de unidades – sistema internacional – para o projeto: *Options > Unit System (US Customary/SI*) > selecionar a opção "*System International (Metric System*)" > OK;

🚟 HEC-RAS 6.4.1				
File Edit Run View	Options GIS Tools Help			
	Program Setup Default Parameters	HEC-RAS		
Project:	Unit system (US Customary/SI)		Select Units System	
Geometry:	Convert Project Units Convert Horizontal Coordinate Systems	C US Customar	у	-
Steady Flow:		(• System Inter	national (Metric System)
Description:		Bet as defaul	t for new projects	
		ОК	Cancel	Help

5.3. Salvar o projeto HEC-RAS (*File > Save Project As...* > procurar a pasta pretendida > atribuir um título ao projeto > clicar OK).

Title			File Name	Selected Folder	Default Project Folder	Documents
RSPrincipalAfluentes			RSPrincipalAfluente.prj	d:\RibSeca_PrincipalAfluentes		
RSPrincipalAflue	ntes		RSPrincipalAfluente.prj	RibSeca_PrincipalAfluentes		
ок	Cancel	Help	Create Folder	d: [SIG]		

6.º Passo Validação dos dados geométricos importados do ArcMap e introdução de dados

6.1. Importar os dados geométricos gerados no ArcMap: File > Import Geometry Data > GIS Format
 > Adicionar o ficheiro exportado no ArcMap (GIS2RAS) > clicar OK. Selecionar a opção SI (metric) units > Next > manter os restantes dados por defeito > clicar em Finished - Import Data,

X	Geometric Data		
File	Edit Options View Table	fools GIS Tools Help	
	New Geometry Data	BC Reference IC Reference Lines Lines Points Points E	
	Open Geometry Data		
	Save Geometry Data		
	Save Geometry Data As		
	Rename Geometry Title		
	Delete Geometry Data		
-	Copy to Clipboard	🚟 HEC-RAS 6.4.1	
	Print	File Edit Run View	v Options GIS Tools Help
-			- 🖓 🛁 k k k 😤 📰
	Import Geometry Data	GIS Format	

The impor	t data has been rea	l into a temporary geometry s	structure and
now can b	e incorporated into	the current geometry file. Ste	ep through the
various tal	os to select the desir	ed import options. When all	the appropriate
options ha	ve been set, press t	he Finished - Import Data but	ton.
-			
	Compart DAC analysis at united		
	current RAS project units:	SLUnits	
		C US Customary units	
	Import data as:	a month and a second	
	Import data as:	• SI (metric) units	
	Import data as: Import dat	SI (metric) units a will not be converted on import.	

6.2. Validar as secções transversais (*Cross Section*): *Tools> Graphical Cross Section Edit*. Com recurso aos comandos assinalados a vermelho são validados manualmente os "*bank points*" (margens da ribeira) em cada secção. Após a validação das margens (*Left Bank* e *Right Bank*) em todas as secções, guardar as alterações realizadas: *File> Save Geometry Data*,

6.3. Atribuir os Valores N de Manning: *Tables > Manning's n or k Values*. Preencher as três colunas com base nos valores disponibilizados em bibliografia da especialidade (ver Tabela 2.1). Após a finalização do preenchimento da tabela, clicar OK. No presente caso são atribuídos os valores 0,030;

ver: (All Rivers) ach:	- -	X 🖻 🖻 🗸	Edit Interpolated	IXS's Chann a	el n Values have light green background	
Selected Area Edit	Options Multiply Factor	Set Values .	Replace	Redu	ce to L Ch R	
River	Reach	River Station	Frctn (n/K)	n #1	n #2	n #3
1 RSUR	UpReach	4743.588	n	0.030	0.030	0.030
2 RSUR	UpReach	4714.287	n	0.030	0.030	0.030
3 RSUR	UpReach	4682.354	n	0.030	0.030	0.030
4 RSUR	UpReach	4649.402	n	0.030	0.030	0.030
5 RSUR	UpReach	4606.918	n	0.030	0.030	0.030
6 RSUR	UpReach	4557.662	n	0.030	0.030	0.030
7 RSUR	UpReach	4507.339	n	0.030	0.030	0.030
8 RSUR	UpReach	4452.168	n	0.030	0.030	0.030
9 RSUR	UpReach	4378.221	n	0.030	0.030	0.030
10 RSUR	UpReach	4333.939	n	0.030	0.030	0.030
11 RSUR	UpReach	4298.998	n	0.030	0.030	0.030
12 RSUR	UpReach	4232.274	n	0.030	0.030	0.030
13 RSUR	UpReach	4181.432	n	0.030	0.030	0.030
14 RSUR	UpReach	4088.912	n	0.030	0.030	0.030
15 RSUR	UpReach	4037.861	n	0.030	0.030	0.030
16 RSUR	UpReach	3969.245	n	0.030	0.030	0.030
17 RSUR	UpReach	3921.206	n	0.030	0.030	0.030
18 RSUR	UpReach	3845.16	n	0.030	0.030	0.030
19 RSUR	UpReach	3781.003	n	0.030	0.030	0.030
20 RSUR	UpReach	3732.371	n	0.030	0.030	0.030
21 RSUR	UpReach	3665.467	n	0.030	0.030	0.030
22 RSUR	UpReach	3608.314	n	0.030	0.030	0.030
23 RSUR	UpReach	3549.19	n	0.030	0.030	0.030
24 RSUR	UnReach	3482.749	n	0.030	0.030	0.030

6.4. Verificar a tabela *Reach Lenghts*. *Tables* > *Reach Lenghts*. Deve verificar-se se os valores foram corretamente exportados do ArcMap (valores dos LOB - "*Left Over Bank*", "Channel" e ROB - "*Right Over Bank*": distância da intersecção da secção transversal com o *flowpath* até à intersecção da seguinte secção transversal com o *flowpath*). Caso existam campos com valores inferiores ou igual a 0, deve-se calcular o valor correto (no ArcMap) e introduzi-lo manualmente nesta tabela. Após a verificação estar concluída clicar OK;

er: (All Rivers)	- *	🖻 🛍 🔽 Edit Int	terpolated XS's		
ach:	-				
elected Area Edit Or	otions				
Add Constant	Multiply Factor	Set Values	Replace		
Piver	Peach	Diver Station	108	Chappel	POB
	InReach	4743 588	27.86	29.3	28.41
2 RSUR	UnReach	4714.287	30.82	31.93	32.99
3 RSUR	UpReach	4682.354	31.49	32.95	35.42
4 RSUR	UpReach	4649.402	41.3	42.48	43.9
5 RSUR	UpReach	4606.918	48.42	49.26	47.38
6 RSUR	UpReach	4557.662	50.9	50.32	47.95
7 RSUR	UpReach	4507.339	57.11	55.17	53.71
8 RSUR	UpReach	4452.168	75.32	73.95	61.99
9 RSUR	UpReach	4378.221	45.72	44.28	38.56
10 RSUR	UpReach	4333.939	34.36	34.94	30.75
11 RSUR	UpReach	4298.998	68.42	66.72	58.26
12 RSUR	UpReach	4232.274	46.56	50.84	52.25
13 RSUR	UpReach	4181.432	61.9	92.52	62.89
14 RSUR	UpReach	4088.912	53.05	51.05	51.7
15 RSUR	UpReach	4037.861	57.45	68.62	56.37
16 RSUR	UpReach	3969.245	52.47	48.04	47.2
17 RSUR	UpReach	3921.206	55.93	76.05	59.04
18 RSUR	UpReach	3845.16	58.36	64.16	77.83
19 RSUR	UpReach	3781.003	42.92	48.63	60.76
20 RSUR	UpReach	3732.371	35.33	66.9	65.71
21 RSUR	UpReach	3665.467	44.56	57.15	64.44
22 RSUR	UpReach	3608.314	54.02	59.12	63.53
23 RSUR	UpReach	3549.19	57.16	66.44	72.32

6.5. Filtragem dos pontos das secções transversais – perfis que contenham 500 ou mais pontos serão redimensionados para o valor máximo permitido de pontos (499): *Tools > Cross Section Points Filter >* selecionar a aba "*Multiple Locations*" > clicar na opção "*Filter Points on Selected XS*". A filtragem será, desta forma, realizada de forma automática. Guardar a geometria final: *File > Save Geometry Data.*

		Sele	cted Locations	(252 se	lected)	
/er: (4	All Rivers)		R UpReach	4743.588 (1	.11)	
		RSU	R UpReach	4714.287 (1	.08)	
ach:		RSUF	R UpReach	4682.354 (1	.35)	
or Cto .	(All Rivers)	RSUF	R UpReach	4649.402 (1	.55)	
er sta.:	(All Rivers)	RSU	R UpReach	4606.918 (1	.28)	
		RSU	R UpReach	4557.662 (1	.16)	
		→ RSU	Q UpReach	4507.339 (1	.20)	
		RSU	UpReach	4452.168 (1	.12)	
		RSU	Q UpReach	43/8.221 (1	.27)	
		RSU	C UpReach	4333.939 (1	.35)	
		RSU	с Upkeach	4298.998 (8	5)	
		RSU	C UpReach	4232.2/4 (9		
		RSU	C UpReach	4181.432 (/	1)	
		RSU	C Upreach	4088.912 (/		
		RSU	C UpReach	4037.001 (9	17)	
		RSU	UpReach	3909.245 (1	.1/)	
		RSU	UpReach	3921.200 (1 2045 16 (0)	.07)	
		JKSU	с оркеаст	0) 01.040	/)	
ear and (Colinear Filter Minir	mize Area Change				
umber of	points to trim cross s	section down to: 499	Filter Points	on Selected XS	1	
					<u>u</u>	

7.º Passo

Gerar as áreas inundáveis para um período de retorno de 100 anos

7.1. Introduzir os dados de fluxo/escoamento – configurar o Steady Flow Data. Edit > Steady Flow Data. Atribuir os valores do caudal de ponta referentes ao tempo de retorno de 100 anos (cf. Tabela 3.2) > Clicar em "Reach Boundary Conditions" > introduzir os valores da inclinação média das linhas de água (cf. Tabela 3.2) nos campos "Upstream" e "Downstream". Guardar os dados introduzidos: File > Save Flow Data,

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

ster ster	ady Flow Da	ta						- 0	×		
File O	ptions He	lp									
Descriptio								An	oly Data		
Descriptio	. I		-	10 Th		4			pry batt		
Enter/Edi	t Number of F	Profiles (32000 max): 1	Rei	ach Boundary Cor	ditions					
-		Loc	ations of F	ow Data	Changes						
Diver:					Contribution - Andre C		dd Multiple				
river. p	NJUK	<u> </u>	T.								
Reach:	UpReach	R	iver Sta.:	4743.588	<u> </u>	Add A Flow Cha	ange Location				
	Flow C	hange Location				Profile Names	s and Flow Rates				
River	r	Reach	RS	PF 1	14				1		
1 RSDF	R	DownReach	518,169	4.43							
2 RSD	Г	DownTributary	988.323	4.05							
3 RSM	R	MidReach	1272.15	5.90							
4 RSM	T	MidTributary	4358.110	31.67							
5 RSUF	R	UpReach	4743.58	16.17							
			Steady F	ow Bour	idary Conditions						
			 Set b 	oundary	for all profiles		Set bound	ary for one pr	ofile at a time	2	
ř – –						Available Ext	ernal Boundary Con	dtion Types			
			Known	w.s.	Critical	Denth	Normal Depth	Ratir	on Curve		Delete
Edit Stea	dy flow data	for the profiles (m3					- Hormer Depart		ig conve	_	
					S	elected Bounda	ry Condition Locatio	ons and Types	T		
			River		Reach	Profile	Upstro	eam	Dov	Instream	m
			RSDR		DownReach	all	Junction=3	0.14	Normal Dept	hS = 0	.21
			RSDT		MidDooch		Normal Depth S	= 0.14	Junction=3		
			RSMT		MidTributary	all	Normal Depth S	= 0.11	Junction=2		_
			RSUR		UpReach	all	Normal Depth S	= 0.08	Junction=2		
- Char	du Elaur Da	ta flaur									
9→ Stea	ady Flow Da	ta - now					_				
File O	ptions He	lp.			ge Area Oj	otimization		OK	Cano	el	Help
Ne	ew Flow Dat	a			for the do	wnstream side o	of selected reach.				
0,	nen Flow Da	ta									
Sa	ve Flow Dat	а									
Sa	ve Flow Dat	a AS									
Re	name Flow	Title									
De	elete Flow D	ata									

7.2. Realizar a simulação "Steady Flow Analysis": Run > Steady Flow Analysis > selecionar a opção
"Mixed" > clicar em "Compute". Guardar a simulação: File > Save Plan,

199								
🔚 Н	EC-RA	S 6.4.1						
File	Edit	Run	View	Options	GIS Tools	Help		
2			Steady	Flow Anal	ysis			
<u>.</u>			Unstea	dy Flow Ar	nalysis			
Projec	:t:		Quasi-Unsteady Analysis (Sediment)					
Diama								

HEC-RAS Finished Computations	- 0	×
Write Geometry Information Layer: COMPLETE		
Steady Flow Simulation		
River: RSDR	RS: 18.9002	
Reach: DownReach	Node Type: Cross Section	
Profile: PF 1		
	Computing supercritical profile	
Simulation: 1/1		
Computation Messages		
Plan: 'Plan 01' (RSPrincipalAfluente.p01) Simulation started at: 27set2023 11:51:59 AM Writing Plan GIS Data Completed Writing Plan GIS Data Writing Geometry Computing Bank Lines		
Computing Edge Lines	8 Standy Elaw Analyzia	— — X
Edge Lines generated in 92 ms	Steady Flow Analysis	^
Computing XS Interpolation Surface	File Options Help	
Completed Writing Geometry	Plan: Short ID:	
Writing Event Conditions Completed Writing Event Condition Data	Geometry File: geometria	-
completed which geven condition bate	Steady Flow File:	
Steady Flow Simulation HEC-PAS 6.4.1.1	Ine 2023	
steady non sinulation file in to of his st	Flow Regime Plan Description	
Childred Chards Flag Chards Fas		
Finished Steady Flow Simulation		
	Optional Programs	
Computations Summary		
Computation Task	Time(hh:mm:ss)	*
Completing Geometry, Flow and Plan	3	
Complete Process	Compute	
	Enter/Edit short identifier for plan (used in plan comparisons)	
	为 Steady Flow Analysis	
	File Options Help	
	New Plan	
Pause Make Snapshot of Ri	esults Open Plan try Close	
	Save Blan	
	Save Flatt	
	Save Plan As	
	Rename Plan Title	
	Dulate Dise	
	Delete Plan	

7.3. Visualizar o resultado da simulação clicando no comando "*View Cross Sections*", sinalizado a vermelho. Nesta fase a informação é apresentada em gráfico, correspondendo ao preenchimento das secções transversais definidas com água.

8.º Passo Exportação dos dados resultantes da simulação para o ArcMap

8.1. Exportação dos dados gerados pela simulação do escoamento (em formato .sdf): File > Export GIS Data > em "Results Export Options" selecionar "Water Surfaces" e "Water Surface Extents" > clicar "Export Data";

				-
	Export File: d: RibSeca_PrincipalAfluer	ites\RSPrincipalAfluenteT100.RASexp	ort.sdf	Browse
	Reaches and Storage Areas to Export			
	Select Reaches to Export	Reaches (5/5)		
	Select Storage Areas to Export	Storage Areas (0/0)		
	Results Export Options	r Surface Extents	Select Profiles	to Export
🗮 HEC-RAS 6.4.1	Profiles to PF 1 Export:	a surrace externs		
File Edit Run View Options				
New Project	Flow Distribution (252/252 have deta	iled values)	Additional Information	
Open Project	Velocity		☐ Ice Thickness (where	available)
Save Project	Shear Stress			
Save Project As	1 Stream Power			
Rename Project Title	Geometry Data Export Options			
Delete Project	Cross Section Surface Lines	Additi	onal Properties	
Project Summary	User Defined Cross Sections	🗌 Reach Lengths		
Import HEC 2 Data	(all XS's except Interpolated XS's)	🔲 Bank Stations (improves v	elocity, ice, shear and po	wer mapping)
Import HEC-2 Data	C Entre Cross Sections	Levees		
Import HEC-KAS Data	C Channel only	Blocked Obstructions		
Generate Report		Manning's n		
Export GIS Data		Export Data	Close	Help
Export to HEC-DSS	2	Export Data	Liose	

8.2. Guardar o projeto HEC-RAS e fechá-lo.

🚼 HEC-RAS 6.4.1	- D X				
File Edit Run View Options GIS Tools Help					
New Project					
Open Project	l:\RibSeca_PrincipalAfluentes\RSPrincipalAfluente.prj				
Save Project As	1: \RibSeca_PrincipalAfluentes\RSPrincipalAfluente.p01				
	1:\RibSeca_PrincipalAfluentes\RSPrincipalAfluente.g01				
Rename Project Title	1: \RibSeca_PrincipalAfluentes\RSPrincipalAfluente.f01				
Delete Project					
Project Summary	🚊 SI Units				

3.2.3 Modelação das Áreas Inundáveis no ArcMap

Na presente etapa os dados dos perfis de inundação são convertidos em informação espacial no ArcMap, com recurso à extensão HEC-GeoRAS.

9.º Passo Preparação do projeto de trabalho

- 9.1. Abrir o documento ArcMap guardado anteriormente, no passo 4.2;
- 9.2. Converter o ficheiro .sdf para formato .xml: selecionar o ficheiro .sdf exportado do HEC-RAS;

Convert RAS	S Export SDF to XML	×
	D.\BibSeca Principal Afluentes\BSPrincipal AfluenteT100 BASevo	123
THO OUT THE.	b. (abbeca_i micipal vidence a for micipal vidence i rud. i videxpi	
RAS SUP File.	D:\RibSeca_PrincipalAfluentes\RSPrincipalAfluenteT100.RASexp	

- 9.3. Configurar o *plugin RAS Mapping. RAS Mapping > Layer Setup*:
 - 9.3.1. Selecionar New Analysis e escrever um nome para o novo Data Frame a ser criado;
 - 9.3.2. Em RAS GIS Export File, adicionar o ficheiro convertido em .xml no passo 9.2;
 - 9.3.3. Em *Terrain Type*, selecionar a opção TIN, de seguida selecionar a TIN correspondente aos dados de entrada (tin_ribseca);
 - 9.3.4. Em *Output Directory*, escolher a pasta em que se pretende guardar a informação que será processada pelo *RAS Mapping*,
 - 9.3.5. Em Rasterization Cell Size, definir o tamanho 5.

Guia Prático: Delimitação de Áreas Inundáveis com Base nos Caudais de Ponta de Cheia para os

Períodos de Retorno de 25, 50 e 100 anos

Analysis Type	
O Existing Analysis	· · · · · · · · · · · · · · · · · · ·
O New Analysis	RSPrincipalAfluente T100
RAS GIS Export File	D:\RibSeca_PrincipalAfluentes\RSPrincipalAfluenteT100.F
Terrain	
_	Terrain Type O TIN O GRID
O Single	Terrain D:\RibSeca_PrincipalAfluentes\data\tin_ribs
⊖ Multiple	DTM Tiles Layer
Dutput Directory	D:\RibSeca_PrincipalAfluentes\RSPrincipalAfluenteT100
Geodatabase	RSPrincipalAfluent
Rasterization Cell Size	5 (map units)

9.4. Importar os dados resultantes da pré-modelação realizada: *RAS Mapping > Import RAS Data >* OK.

		Start Time	Message Type	Message	
	+	27/09/2023 12:45:10	Informative	Trying to create velocity points	io
ping 🕶 📈 🙀 👭 🖊 🐳 🤝		27/09/2023 12:45:10	HEC-Geol	RAS X	
yer Setup		27/09/2023 12:45:10	lt lt		5
nort RAS Data		27/09/2023 12:45:10	Ir DAS data imported to CIS successfulled S		.s
		27/09/2023 12:45:10	h lt	in period to the successfully.	
nundation Mapping		27/09/2023 12:45:10	le		
elocity Mapping		27/09/2023 12:45:10	lr	OK	
e Mapping		27/09/2023 12:45:10	Informative	RAS data imported to GIS succe	essfully!
hear Stress Manning					
ical Stress Wapping					
ream Power Mapping					
			ОК	Help Cancel	
SPrincipalAfluenteT100 Respective	J.				

10.º Passo Modelação das áreas inundáveis

10.1. Criação da TIN com base nos dados importados do HEC-RAS: *RAS Mapping > Inundation Mapping > Water Surface Generation.*

10.2. Modelação das áreas inundáveis: *RAS Mapping > Inundation Mapping > Floodplain Delineation Using Rasters*.

Layer Setup	Ψ×	
Import RAS Data		
Inundation Mapping	•	Water Surface Generation
Velocity Mapping		Floodplain Delineation Using Rasters
Ice Mapping		
Shear Stress Mapping		
Stream Power Mapping		
Visualization	•	
Postprocessing Utilities	•	

- 10.3. Verificar e validar as áreas inundáveis com recurso a trabalho de campo e com auxílio das ocorrências históricas; confirmar a inexistência de erros associados à triangulação da TIN;
- 10.4. Uniformizar os limites das áreas inundáveis. Os limites das áreas inundáveis devem ser suavizados/aligeirados, evitando-se formas/limites de área inundável "pixelizados"/geométricos.
- 11.º Passo Produzir as áreas inundáveis para um período de retorno de 50 anos
 - 11.1. Repetir o processo a partir do 7.º Passo, com a introdução dos valores do caudal de ponta de cheia para o período de retorno de 50 anos para as cinco linhas de água (Tabela 3.2).
- 12.º Passo Produzir as áreas inundáveis para um período de retorno de 25 anos
 - 12.1. Repetir o processo a partir do 7.º Passo, com a introdução dos valores do caudal de ponta de cheia para o período de retorno de 25 anos para as cinco linhas de água (Tabela 3.2).

3.3 Erros Mais Comuns no Processamento dos Dados Geométricos

No decurso da aplicação do procedimento de modelação e produção das áreas inundáveis é comum ocorrerem erros de processamento, especialmente associados à criação dos dados geométricos necessários à simulação do escoamento. Quando ocorrem erros de desenho, o sistema de informação geográfica em que se está a trabalhar não deixará que se prossiga com o processamento da informação, indicando a existência de erro, mas não identificando de que erro se trata. Desta forma, neste capítulo pretende-se elencar os erros mais frequentes durante a etapa de processamento de dados.

1. Falta de Informação no Cruzamento de Dados entre as Shapefiles e TIN

Ao utilizar o comando "*Stream Centerline*" para cruzar a linha de água com os dados da TIN e preencher a tabela de atributos (passo 3.3.5 da etapa de processamento de dados no ArcMap), um dos erros mais comuns é o não existir informação altimétrica na foz, pelo facto da linha de água estar desenhada para além dos limites da informação de base. Para resolver este erro basta retificar a linha de água de forma que, em toda a sua extensão, esta cruze com a informação da TIN (Figura 3.3).

O mesmo pode suceder aquando do processamento das restantes *shapefiles* (*Banks, Flowpaths, XSCutLines*). Toda a informação criada deve estar sobreposta à TIN e nunca deve ultrapassar os limites da mesma. A elevação da TIN é um elemento essencial para o cruzamento e obtenção de dados.

Figura 3.3 | Exemplo de desenho da foz da linha de água: foz desenhada em local sem informação da TIN (imagem da esquerda); e foz desenhada em local com informação da TIN (imagem da direita)

2. Erros no Desenho da Camada XSCutLines

Ao desenhar as linhas das secções transversais da camada "*XSCutLines*" (passo 3.6.3 da etapa de processamento de dados no ArcMap) deve intersectar-se os elementos referentes às camadas *Flowpaths, Banks* e *River,* tendo o cuidado de não intersectar outras linhas das secções transversais (Figura 3.4).

Figura 3.4 | Exemplo de desenho de elementos da camada *XSCutLines*. linha (A) não intersecta todos os elementos necessários e linha (B) intersecta outra linha da camada *XSCutLines* (imagem da esquerda); e linhas intersectam todos os elementos necessários sem se intersectarem (imagem da direita)

No caso do desenho dos elementos da camada "*XSCutLines*" para modelação de mais do que uma linha de água (linha de água principal e afluentes), deve ter-se a devida atenção de forma a que cada secção transversal intersecte os elementos necessários referentes a apenas uma linha de água, ou seja, as secções transversais não podem intersectar elementos de diferentes linhas de água (Figura 3.5).

Figura 3.5 | Exemplo de desenho de elementos da camada *XSCutlines*: linha intersecta elementos referentes a duas linhas de água (imagem da esquerda); e linhas intersectam os elementos referentes apenas a uma linha de água (imagem da direita)

4 Bibliografia

- GONÇALVES, J.A.V., 2016. *Caracterização do Coeficiente de Rugosidade e seu Efeito no Escoamento em Canais Naturais. Simulação e modelação (à escala) no laboratório de hidráulica. Aplicação às ribeiras do Funchal.* Tese de Mestrado em Engenharia Civil. Universidade da Madeira. 146 pp.
- GONÇALVES, P., 2012. *A Delimitação de Perímetros de Inundação no Rio Leça modelação hidráulica para duas áreas do concelho de Matosinhos.* Tese de Mestrado em Sistemas de Informação Geográficos e Ordenamento do Território. Universidade do Porto. 126 pp.
- HIPÓLITO, J.R. & VAZ, A.C., 2013. Hidrologia e Recursos Hídricos. Coleção Ensino da Ciência e Tecnologia. Instituto Superior Técnico. IST Press, 2.ª Edição, dezembro de 2013. 796 pp.
- ORIENTAÇÕES METODOLÓGICAS, DELIMITAÇÃO DA RE-PDM NA REGIÃO AUTÓNOMA DOS AÇORES. Secretaria Regional do Ambiente e Alterações Climáticas – Direção Regional do Ordenamento do Território e dos Recursos Hídricos. Ponta Delgada, julho de 2021. 54 pp.
- PLANO DE GESTÃO DA REGIÃO HIDROGRÁFICA DOS AÇORES 2022-2027 (PGRH-AÇORES 2022-2027). Relatório Técnico. Caracterização e Diagnóstico da Situação de Referência, Volume 5 – São Jorge. Secretaria Regional do Ambiente e Alterações Climáticas – Direção Regional do Ordenamento do Território e dos Recursos Hídricos. Ponta Delgada, dezembro de 2021. 280 pp.
- PLANO DE GESTÃO DE RISCOS DE INUNDAÇÕES DA REGIÃO AUTÓNOMA DOS AÇORES 2022-2027 (PGRIA), 2022. Versão para discussão pública. Secretaria Regional do Ambiente e Alterações Climáticas – Direção Regional do Ordenamento do Território e dos Recursos Hídricos. Ponta Delgada, julho de 2022. 53 pp.
- PROGRAMA REGIONAL PARA AS ALTERAÇÕES CLIMÁTICAS DOS AÇORES (PRAC), 2017. Programa Regional para as Alterações Climáticas dos Açores. Versão para consulta pública. Outubro de 2017. 181 pp.

